厂区建设方案【优秀5篇】

发布时间:

时间流逝得如此之快,我们的工作又迈入新的阶段,请一起努力,写一份计划吧。计划怎么写才能发挥它最大的作用呢?以下我给大家整理了一些优质的计划书范文,希望对大家能够有所帮助。它山之石可以攻玉,下面差异网为您精心整理了5篇《厂区建设方案》,希望能够对困扰您的问题有一定的启迪作用。

厂区建设方案 篇一

关键词:封闭式高层气化厂房;通风方案

中图分类号:TU208.3 文献标识码:A 文章编号:

1.1引言

气化厂房属于甲类厂房,厂房内的工艺生产合成气中含有CO、H2等燃易爆气体,一般为敞开式框架建筑,但在北方严寒地区,由于冬季室外温度很低,为满足项目安全生产及工艺竖向操作的要求,很多厂房设计成全封闭式高层甲类厂房;为保证厂房的安全生产及事故状态有害气体的及时排放需设置机械通风,由于有害气体(CO、H2等)要求通风换气量大且对风口布置有较高要求的特点,合理的通风方案对于建筑层高及工程造价有较大的影响。

1.2工程概况

本气化厂房为封闭式厂房,位于北方严寒地区;厂房主体结构为混凝土框架结构,四周采用夹心彩钢板围护,建筑占地面积约3500m2,总建筑面约为15660m2,共10层,建筑高度63m。气化厂房生产过程中产生的有害气体主要含有CO和H2以及少量的H2S、CH4等易燃易爆气体。

1.3通风换气量的确定

根据《化工采暖通风与空气调节设计规范》(简称《化工暖规》)HGT20698-2009第5.1.6条规定:“稀释通风量应根据有害物质的放散量和国家卫生标准规定的车间空气中有害物质的容许浓度,按本规范附录B计算确定。当缺乏计算数据时,按照规范附录C、D换气次数进行计算”。

由于大多数情况下,有害气体的释放具有不确定性,因此,有害气体全面通风量通常是按照换气次数确定的,其排风量计算公式如下:

G= n.V = n.S.h (1.3-1)

式中:

G:全面通风量,m3/h

n: 换气次数,次/h

V:房间的体积,m3

S: 房间的面积,m2

h:房间的高度,m

由于主要有害气体为CO和H2,根据上述规范附录查得换气次数如下:

表1放散化学物质车间的换气次数

根据《化工暖规》第5.6.3条的规定:“事故通风,宜根据工艺通风设计要求计算确定,但换气次数不应该小于每小时12次/h的换气量”。

综合上述因素,厂房通风量按15次/h考虑,由于H2的密度比空气轻而CO的密度比空气重,考虑到气化厂房为生产热车间,根据《采暖通风与空气调节设计规范》(简称《暖规》)GB50019-2003第5.3.11条的规定综合考虑,厂房各层均设置上下排风,上排2/3即换气次数10次,下排1/3即换气次数5次/h。

1.4排风气流组织方案

建筑物全面通风吸风口的布置在《化工暖规》5.6.1强制条文规定:“ 1)用于排除氢气与空气混合物时,吸风口上缘至顶棚平面或屋顶的距离不大于0.1m;2)位于房间下部区域的吸风口,其下缘至地板间距不大于0.3m;3)因建筑结构造成有爆炸危险气体排出的死角处,应设置导流设施”。在实际设计中,结构最小的次梁一般都有0.3m高,此外纵横交错的主次梁将房间分隔为若干个#型的空间,如何满足规范要求避免气流死角同时最大限度的节省投资费用是实际设计中的一个关键问题之一。

1.4.1方案一

为满足规范对排风口及排风量的要求,按照常规做法:由1.3节确定的总排风量G(Gs+Gx)上下排风,上排2/3(Gs)即换气次数10次,下排1/3(Gx)即换气次数5次/h。

Gs=10.S.h(1.4-1)

Gx= 5.S.h(1.4-2)

式中:

Gs:上部排风量,m3/h

Gx:上部排风量,m3/h

S :各层房间面积,m2

h :各楼层高度,m

图 1.4-1图 1.4-2

风口布置见上图1.4-1:下部排风量Gx由直接安装在每层外墙下部的下排风机承担,吸风口下缘距室内地面距离小于0.3m即可;上部排风量Gs由上排风机承担,通过风管连接,在建筑结构每个#型空间区域内设置吸风口,且吸风口上缘距楼板间距小于0.1m。

此方案为通风的常规做法,但对于本项目不是很合理。由于排风量很大,导致风管的断面很大,通过实际计算风管干管的断面高度需要0.6m~0.8m。故建筑层高需考虑风管至少600mm的安装高度,否则由于建筑层高的限制以及工艺配管的空间要求,风管布置很难避让工艺管道,而楼层增加600mm以上的高度对高层甲类厂房来讲无疑会增加工程费用。

1.4.2方案二[4]

方案二主要通过对上述方案一的优化得出的(见图1.4-2):假设在房间上部设一分界界面(假想分界面),其标高与主梁底标高齐平,将方案一中的上部排风量Gs分成两部分(Gss和Gsx):Gss为假想分界面以上部分的排风量,通过风管连接风机承担,风管支管在每个#型空间区域内设置吸风口,且吸风口上缘距楼板间距小于0.1m;Gsx为分界面以下部分的排风量,该部分排风量由布置在主梁底的外墙风机承担,风机不接风管。下部排风量Gx与方案一相同,由布置在外墙下部的下排风机承担,吸风口下缘距室内地面距离小于0.3m即可。

此方案为在方案一的基础上进行优化并满足了规范对排风口及排风量的要求。由于风管承担假想界面以上部分的通风,故使得风管断面高度降低,降低了风管的安装空间及对建筑层高的要求;相对于方案一,建筑层高下降、节省了部分工程投资费用,但风管干管断面高度仍需要0.3m~0.4m。

1.4.3方案三

考虑到H2密度极轻且气化厂房为热车间,能形成稳定的上升气流,在对比分析方案一、方案二的基础上,笔者提出一种可行的优化通风设计方案简化通风系统:在各个主次梁围成的#型区域的四个角落分别设置一个300mX300m或200mX200m的栅格,这样避免了#型区域的气流死角,从而使气流上下贯通,同时在屋顶设置屋顶风机。房间下部排风量Gx仍然由布置在外墙下部的下排风机承担,吸风口下缘距室内地面距离小于0.3m即可。上部排风Gs与方案二类似分为两部分(Gss和Gsx),即假想分界面以上和假想分界面以下两部分。假想分界面以下部分仍由各层布置在外墙主梁底的轴流风机承担,而屋顶风机承担所有楼层假想分界面以上区域的排风量(见图1.4-3)。

此方案保证通风量的同时避免了气流死角,也可以较好的满足规范对风口的,对建筑层高无其它增加,大大节约了工程费用。

图 1.4-3

结语

封闭式高层气化厂房通风设计合理与否,直接关系到整个厂房的生产安全及工程投资费用,笔者结合几种不同的通风方案,提出一种可行的优化通风设计方案简化通风系统,减弱对建筑层高的要求,可有效的节省投资,但需与土建专业密切沟通与配合,对其它类似项目的设计具有一定的参考价值,另外通风方案需经有关消防部门审批。

参考文献

[1]、《建筑设计防火规范》【S】GB50016-2006

[2]、《化工采暖通风与空气调节设计规范》【S】HGT20698-2009

[3]、《采暖通风与空气调节设计规范》【S】GB50019-2003

厂区建设方案 篇二

关键词机械工厂竖向设计 物流运输 场地设计标高

一 问题的提出

设计地面是将自然地形加以适当改造,使其满足设计项目对场地平整程度和高差变化的使用功能要求。根据设计地面整平面之间的连接方法不同,地面的竖向布置形式分为以下三种:

1.1平坡式

平坡式一般适用于自然地形较为平缓(坡度在3%~4%之间)的场地;以及建筑密度大且铁路、道路、管线较密集,单个建筑占地较大,建筑布置集中,对场地地面坡度要求较严格(坡度小于2%)的建设项目。

1.2台阶式

台阶式布置适用于自然坡度较大(大于4%)、面积较大的场地;或单体建筑占地较小、建筑布置分散,道路交通联系简单、管线不多,以及有大量单向重力运输要求(建筑物之间高差在1.5米以上)的建设项目。

1.3混合式

混合式(又称重点式)竖向布置,是混合运用上述两种形式进行的竖向布置,即根据使用要求和地形特点,把建设用地分为几个区域,有的区域采用平坦式以利于建筑的布置,而有的区域则采取台阶式以适应自然地形的复杂变化。如丘陵地区,为保证主体建筑的建设及交通等要求,可采用平坡式;而辅助部分则可按阶梯式布置。

以上三种竖向布置形式适用于各类建设项目的竖向设计,但对于机械工厂场地设计来讲,采用那种竖向设计形式才能充分利用、合理改造自然地形?如何合理选择场地设计标高,使之满足建设项目的使用功能要求?再者对机械工厂的场地竖向设计有没有规律可循呢?

二 策略与措施

2.1平原地区的机械工厂竖向设计

厂区竖向设计之前,首先应考虑满足生产工艺及物料运输的要求,脱离物流运输这个重要环节的竖向设计往往是不成熟的。机械工厂外部运输方式一般为汽车运输,厂内运输方式主要采用叉车、平板车、电瓶车等。

沈阳机床厂新建厂区位于沈阳市铁西经济技术开发区。厂区原始地貌属东北平原地区,场地自然标高标高在31.97~33.25之间。工厂对外运输为无轨方式,原材料及成品运输方式主要靠汽车运输。根据竖向设计的基本原理,可以确定本厂区的场地竖向布置方式应该为平坡式。

场地四周城市道路交叉口设计标高在32.20米~32.60米。根据机械工厂场地设计的一般原则,设计时首先进行了土方计算,考虑基础及道路路槽开挖的余土,最后得出场地设计标高为32.80米。

2.2山区、丘陵地区的机械工厂竖向设计

2.2.1项目一:重庆机床厂

重庆机床厂新征地块属于典型的山区丘陵地带,土方平整之前地势山谷交错,跌荡起伏。原始自然标高最高点256米,最低点185米。新厂区平整后的场地内最高点标高与地块周边道路标高高差也尽20米。

下面以甲、乙两家设计院出现的不同设计方案进行比较说明。

甲设计院注重生产的生产工艺流程,将各个生产联合厂房用平板轨道连接起来,布置在用地的中央位置,各联合厂房的布置基本占据了地块的3/4,如果建筑物有引入轨道的,轨道标高宜与建筑物地面标高相同。则各生产厂房室内设计标高应该在一个标高段上。竖向设计时根据工厂出入口标高情况推算出生产厂房的室内设计标高在223.30米。由于地块四周城市道路设计标高均明显低于地块内场地标高。故解决高差的方式只有在边坡进行处理,边坡处理的方式有护坡和挡土墙两种形式。以上可以看出甲设计院的这种竖向布置方式还是平坡式布置。这样布置的优缺点如下:

1)生产区处于一个标高,便于布置各生产厂房的相对位置,厂房之间物流联系方便。

2)厂内运输长期运营费用低。

3)土方工程量相对较大,一次性建设投资大。

4)由于厂区边界处边坡较陡,不便于厂区对外联系,厂外运输困难。

再看乙设计院的设计方案,乙设计院共布置有两个方案,按总平面思路布置的不同竖向台阶均分为三个台阶,厂区北部作为一个台阶,南部自东向西分为两个台阶。台阶高度差最小为0.50米,最大为4.8米。因机械工厂各联合厂房之间物流联系紧密,为便于运输,一般在两个联合厂房之间设置平板车。引入建筑物的铁路轨顶标高,宜与建筑物地面标高相同。乙设计院在处理厂房之间高差时采用如下图所示方案。

可以看出,乙设计院竖向设计方案的优点:

1)因地制宜,按照厂区自然地势布置各生产厂房、办公建筑。

2)节省土石方工程量和建设资金。

缺点是:

1)厂区内部各台阶之间用挡土墙连接,汽车运输不便。

2)厂房室内地坪之间存在高差,不便于零部件的周转。

可以看出,乙设计院相对甲设计院竖向设计方案要合理一些,但如果采用乙设计院的方案会让业主将来的运营费用增加,这也是业主在最终选择方案时采用了甲设计院的方案。

2.2.2项目二:大重大起旅顺基地建设项目

大重大起旅顺基地建设项目建设场地位于旅顺经济开发区,场地地势起伏较大,总体上为东北高、西南低,最高处与最低处相差二十几米。建设场地南北长约750米,平均坡度约3%。东西宽约650米,宽度不算很大,按地面竖向布置形式应该采用平坡式竖向布置,在设计时根据生产设施之间的相互密切程度和物流强度,考虑到建设进度要求紧急,再者就是场地基岩多为坚硬岩石,为减少人工平整场地的土方工程量,而选择了台阶式布置形式。如A-A剖面图所示:将场地基本分为三个标高段,北部生产区域标高为28.00米,南部生产区域标高为16.00米,而位于中部的办公生活区域标高则定为20.00米。利用位于厂区中部的南北向道路作为三个标高段的连接通道。道路纵向放坡段位于场地中部,按道路设计规范要求,设计时纵向坡度小于8%坡度要求。

上述竖向布置形式实际上也是混合式的布置,比如位于场地南北的生产区域,其本身内部又划分了几个生产单元,各生产单元的竖向布置形式为平坡式。

三 结论

机械工厂多数为机械加工为主的生产企业,为企业赢得经济利益的因素除了工厂管理、生产设备外,更多的是靠工厂内部的物流运输,而工厂竖向设计的优劣将直接影响工厂运输的成败,所以一个好的总平面设计方案也应该是一个合理的竖向设计方案,二者密不可分。

机械工厂的竖向设计方案必须与建设成本挂钩。在确定场地竖向设计标高时一定要与业主有充分的交流与沟通。多了解当地的习惯做法,因地制宜的同时也要考虑入乡随俗。

参考文献:

机械工厂总平面及运输设计规范 JBJ 9-1996,1996

姚宏韬场地设计 沈阳 辽宁科学技术出版社,2000

井生瑞。 总图设计。 北京:冶金工业出版社,1989

厂区建设方案 篇三

关键词:环境影响评价 污水处理 城市 污泥处理

中图分类号:X82 文献标识码:A 文章编号:1672-3791(2012)06(b)-0145-02

随着经济社会的快速发展,城镇用水量不断增加,生活污水、工业废水排放量也快速增加。据统计,1980年全国废污水年排放量为310多亿吨,2000年达到620亿吨,大量废污水排放进一步加剧了水资源紧缺的矛盾。为了贯彻落实国家节能减排政策,各地都加快了城镇污水处理厂的建设。污水处理厂属于公益性的建设项目,本身也是一项环境保护工程,项目建成运行后有利于减少城镇污水中有害物质排放,减轻城镇废污水排放对河流水质的影响。城镇污水处理厂在发挥环境效益的同时,运行过程中也会排放尾水、产生恶臭和污泥等污染物,对环境产生不利影响。

城镇污水处理厂项目的环境影响评价有别于其他建设项目的环境影响评价,如何识别污水处理厂环境影响评价重点是做好环境影响评价的关键所在。本文结合近几年完成的广东省市某市污水处理厂环境影响评价实践经验,针对城镇污水处理厂的特点,探讨了污水处理厂环境影响评价应重点关注的问题。

1 项目背景情况

某市地处广东省中南部,西江下游,珠江三角洲西部。该市某区是该市城市和工业发展的重点区域,区位优势、资源优势明显,制造业中心的雏形凸现,经济持续、健康、快速发展,初步形成了家电、电子、摩托车、化工等支柱产业,但区内尚无一座污水处理厂,生活污水及工业废水未经处理直接排放到区内河涌,造成水环境严重污染。为此,该市拟建设污水处理厂,首期建设规模为日处理污水5万立方米,远期设计总规模为25万立方米。

2 污水处理厂环境影响评价要点

2.1 厂址选择合理性分析

污水处理厂厂址选择合理与否直接决定了建成后的环境影响及其运行成本,选择合理,可使污水处理厂产生的恶臭、污泥、尾水污染问题等得到妥善解决,取得最大的环境效益。因此污水处理工程的环境影响评价必须对厂址选择的合理性进行分析,并提出明确的选址意见。厂址选择合理性论证应重点考虑以下4个方面。

(1)厂址选择是否符合城市总体规划和当地环境保护规划的要求。(2)厂址应位于饮用水源地下游,并应设在城市工业区、居住区的下游。为保证卫生要求,厂址应与城市工业区、居住区保持约300m以上距离。(3)厂址应选择在城市常年主导风向的下风向。(4)结合污水管道系统布置及纳污水域位置,污水处理厂选址宜)差异网○www.chayi5.com(设在城市低处,便于污水自流,沿途尽量不设或少设提升泵站。

污水处理厂厂址选择在该市高新经济技术开发区的外缘,与高新区之间有一条高速公路隔离,厂址距离居民区、医院、学校等环境敏感目标较远,并位于饮用水源地下游和常年主导风向的下风向,符合《城市总体规划》的要求,且附近水网发达,有多个河涌经过,有利于污水处理厂排放尾水。从环境角度分析,本项目厂址选择基本合理。

2.2 污水处理工艺比选

目前我国常用的污水处理工艺有氧化沟、A2/O、活性污泥法、SBR及其变型工艺等。这些处理工艺都较为成熟,出水水质比较稳定,处理工艺本身不作为环评的研究重点。环境影响评价重点是根据纳污水体的功能要求和环保部门的有关规定,从环境保护角度,对可行性研究报告中选择的污水处理工艺进行比选分析,分析拟采取的污水处理工艺是否合理;还要根据对同类污水处理厂的调查进行类比分析,论证其技术、经济的可行性;然后,按照选择的工艺路线,列出各工艺段污染物去除率,并根据工艺参数对达标稳定性进行分析,论证尾水中各污染因子是否达标;从环境角度综合评价,提出推荐方案。

污水处理厂污水处理要求较高,对COD、BOD5、SS、TP、NH3-N、TN的去除率分别要求达到80.0%,85.7%,90.0%,81.8%,73.3%和50.0%以上。根据该工程设计进水水质与出水水质要求、用地面积和工程规模等多种因素综合考虑,工程设计提出了改良A2/O工艺、Unitank工艺及BAF生物滤池3个比选方案。3个方案均能达到该工程要求的排放标准,方案三除磷效果较差,须采用化学除磷,而化学除磷耗药量大,污泥产量高,从出水水质稳定性和保证率方面看,方案一和方案二优于方案三;方案一采用紫外线消毒,方案二采用氯气消毒,氯气在运输、储存和使用过程中存在一定事故风险,从尾水消毒的工艺分析,方案二对环境的影响比方案一和方案三大;方案一占地面积大,方案二较小,方案三最小。结合项目所在地环境背景情况,从环境保护角度综合分析,方案一对环境影响比方案二和方案三小,故推荐方案一,与工程设计选择的方案一致。

2.3 尾水排放对水环境的影响

厂区建设方案 篇四

关键词:场地、通道、台阶

某20万吨/年醋酸项目的特点及概况

本项目工艺装置较少,但辅助设施配套完备。

工艺装置仅为CO制备装置、醋酸装置及中间罐区,储运及辅助设施包括成品罐区及装车台、循环水站、消防水站、空压冷冻站、综合仓库、焚烧及火炬、变电所、综合楼、浴室及食堂等。

本项目周围情况复杂。

场地北侧紧邻厂外公路,厂外公路的另外一侧为某化肥厂;化肥厂紧邻厂外公路一侧为废弃库房等建构筑物。

场地西侧隔条围墙紧邻一焦化厂,焦化厂靠近围墙一侧建构筑物较多,从北向南有总变电站(110KV)、煤气气柜(10000m³)等工艺设施;

场地南侧为某化机厂的库房及辅助用房;

场地东侧紧邻一条自然沟壑,为自然林地和农田。

场地北部紧邻厂外公路有一条从变电站引出的高压线路,跨越厂外公路。高压线线塔高28米。(详见附图。)

场地自然地形复杂。

拟建厂区场地周围均已修建砖砌围墙,场地地形由东北向西南倾斜,高差较大,场地海拔高程在1977.77~1991.21之间,高差约13.5米。该地地貌属喀斯特溶蚀地貌。

场地南北长400米,自然坡度3.4%;场地从东北向西南有一条自然冲沟,沟宽30米,沟深2-7米。东西向相对高差变化较小。

土地使用现状

本项目围墙内用地约12.0公顷。场地东北角靠近厂外公路有少量民宅需要拆迁,场地内无需拆迁建构筑物。

设计思路及总图布置方案

总平面及竖向布置原则

1)满足工艺流程需要,符合卫生、安全、防火要求,便于生产管理。

2)结合厂址自然地形和周围的环境,合理组织运输,厂内交通通畅,对外联系便利。

3)充分利用地形,建构筑物尽量合并集中布置,经济、合理的利用土地。

4)因地制宜,充分利用并合理改造地形,使场地设计标高与自然地形相适应,在满足工艺、运输、检修维修对场地竖向要求的前提下,尽量减少土石方工程量。

总平面布置及竖向设计方案

根据工艺流程,结合用地特点,并根据建设单位对总平面布置的建议,进行了本项目的总平面布置方案设计,现就总平面布置方案说明如下:

1)工厂组成

该20万吨/年醋酸项目由厂前区、装置区、罐区、辅助设施及公用工程区组成,其中厂前区包括:综合楼、总变,食堂及浴室;装置区包括醋酸装置、醋酸中间罐区、CO制备装置等;罐区主要为成品醋酸的储罐区;辅助设施及公用工程区包括循环水装置、消防泵房及水池、给水处理站、空压及氮气站、冷冻站、污水处理、焚烧、火炬及综合仓库等设施。

2)总平面布置方案

根据本项目场地周围情况以及地形特点,将工艺装置区布置于厂区中部,尽量使其远离厂区周边设施,根据工艺流程其从北向南依次为CO装置、醋酸装置、醋酸装置中间罐区;厂前区布置在装置区的北侧,靠近厂外公路。CO装置的西侧为成品储罐区,储罐区的北侧布置有汽车装车区域,邻近物流出入口,方便物料运输。装置区的东侧为公用工程区,尽量利用该处地形,从北向南依次为消防及给水站、循环水站、空压站、氮压站、冷冻站;污水处理站位于醋酸装置的西侧,地势较低的区域;火炬、焚烧、综合仓库位于整个厂区的南部。

厂区分别设置人、物流出入口,并在厂区的南侧靠近省建筑材料机械厂一侧设置临时出入口,为厂区的设备运输、检修创造便利的条件。

如附图所示:

3)竖向设计方案

厂区场地面积12.0公顷,南北长约400米,东西靠北最宽约400米,呈倒三角形状;北高南低、东高西低,南北自然高差13.5米,南北向场地自然地形坡度3.4%。

由于场地面积较小,各装置联系紧密,又要考虑对外运输道路仅为场地北侧场外公路的限制,所以本次竖向设计没有采用大台阶的处理办法,而是采用了贴近地形高差,灵活确定各建构筑物高程、紧密结合地形的式处理办法。临时命名为“紧密结合式”。

厂区北侧的办公楼及变电所考虑到与厂外公路衔接,其标高较高(为1987.6m),保证与厂外公路连接通畅。CO制备、醋酸装置、中间罐区等工艺装置位于厂区中部,其从北向南依次降低,采用约1.5米挡土墙来解决相互间的高差关系。循环水、空压站位于场地的东侧较高的台阶上,其与工艺装置间挡土墙高度为1.0~2.2米。成品罐区、污水处理、事故水池位于场地西侧较低区域,其与东侧厂内道路间为挡土墙,墙高4.5~2.0米,罐区东侧挡土墙兼有罐区围堤作用;污水池里、焚烧、火炬位于厂区的南端,厂区主导风向的下风向,地势较低区域。

存在问题及优缺点

“紧密结合式”布置优缺点

1)装置标高切近场地地形,避免了大填大挖,节约土方工程量。

2)结合各装置的特点,在保证不影响交通运输、车间引道连接、检修维修、消防的前提下,挡土墙的分布与各个装置紧密结合,如罐区周围挡墙与罐区围堤合并(挡土墙兼顾罐区围堤作用),循环水站、空压站区域挡土墙位于其西侧不影响交通、检修维修,CO制备南侧挡土墙靠近厂区道路,其与装置间有足够的空间布置管架等设施;这种与装置紧密结合的挡土墙布置形式合理解决了各装置间的竖向联系,同时使得场地利用率得以提高(与大台阶布置方式相比较)。

3)紧密结合式处理办法的其中一个特点是挡土墙高度均不会太大,解决了大台阶式挡土墙高度较大、阻断台阶间联系等问题。

紧密结合式挡土墙高度宜为:装置高于道路时,其间挡土墙高度h≤2.5米为宜,装置低于道路时其间挡土墙高度h≤4.5米为宜。

这种紧密结合式处理办法,在厂区内部交通运输方面较为优越,厂区主干道及支道衔接通畅,但在局部地区道路坡度较大,局部车间引道坡度较大。

4)紧密结合式处理办法使场地挡土墙分布较多,给地下管线的施工带来难度,尤其是管线在穿越挡土墙部位。

5)工艺装置、罐区、循环水站等设施分别位于不同的标高,物料循环及输送产生位差,给项目运行带来能耗,但能耗的大小需要进一步调查。

综上所述,根据自然地形条件、本项目用地条件、外部交通条件、本项目各装置分布特点,以及工艺流程要求,本项目采用“紧密结合式”布置较为合理,既解决了各装置相互间的高差问题,又不破坏各装置间的紧密联系,且挡土墙与罐区围堤结合设置,提高了项目用地利用率;虽然各装置间存在高差,但各装置间不因为挡土墙的设置而影响了道路的顺畅连接,交通通畅,保证了检修维修、消防、人员出入等对道路交通的要求。

虽然在局部地段存在管道频繁穿越挡土墙、施工相对不便等问题,但其优点较多,总之,本项目采用紧密结合式台阶布置较为合理。

小结:“紧密结合式”布置方式适合于场地面积较小,相对高差较大的情况。在厂区用地面积较小,且高差变化较大,大面积平整不可行的条件下,采用“紧密结合式”布置方式则较为合理。

工艺设施的特殊要求对总图布置的影响

本项目工艺装置与中间罐区分别在两个街区,其原因为:中间罐区为4个储罐,单罐储量均为500m³,其中三个为醋酸半成品,火灾类别为乙A类,一个为甲醇储罐,火灾类别为甲B类。可燃液体总储量为2000m³,根据相关规范要求,应成组集中布置在装置边缘;装置储罐组与装置的防火间距根据相关规范应为20米。

醋酸装置与中间罐区位于两个街区,考虑到地下管线、消防道路、挡土墙等因素,其通道宽度为23米,储罐罐壁距离装置33米,大于规范要求13米。中间罐区与装置之间的连接管线增加了13米(每根管道),费用增加。

成品醋酸储罐有两个,均为10000m³,火灾类别为乙A类。

就目前的总图布置,若将中间罐区集中布置,位于装置的东侧,紧邻装置布置,管线连接便捷,可能在缩短工艺管线长度方面效果更好。

结论:总图布置需要对项目工艺流程及工艺管道材质进行了解。对于某些特殊工艺装置,其连接管道为贵重金属,若工艺装置、储罐区及相关设施布置间距较大,其间的连接管线长度必然增加,则必然会造成工程投资的大幅增加。所以在满足防火、防爆间距、运输等前提下,尽可能做到工艺装置及其相关设施集中布置。

总图设计通道宽度的确定

厂区通道宽度的确定不能草率,需结合防火、防爆要求、地下管线数量多少、管径大小、管架宽度、通道内挡土墙等构筑物情况确定,并应考虑一定的预留。

本项目有两条主通道,为南北向,西侧通道宽度为42米,东侧通道宽度为28米。通道内设施详见小表。

通道内设施统计表

根据上表,西侧通道宽度设计偏大,宽度富余较多;东侧通道宽度偏小,东侧主干道两侧管线密集,部分管线位于道路路面下,可能出现由于道路沉降造成管线易损等问题,若检修、维护,则需破坏路面,给检修维修带来不便。

两个通道宽度均为36米,较为合适。

出现以上问题原因如下:

地下管线的初步设计深度不够,且总图布置确定较早,对地下管线分布情况估计不够充分,使得其与实际偏差较大。

东侧通道西侧为工艺装置与循环水站、消防水站、给水处理站,公用工程管道较多;西侧通道两侧为工艺装置与罐区、污水处理,其间的联系管道多走管架,地下埋设管道较少,从而导致东侧通道紧张,西侧宽松的结果。

给排水管线布置图设计较晚,没能及时反馈,实际上总图布置可根据给排水管线分布情况进行调整。

总图布置确定前应让给排水专业提出地下管线分布情况意见,以使通道宽度设计合理。

中小型石化项目总图设计应注意的事项

经过对某20万吨/年醋酸项目总平面布置、竖向设计方案的分析,以及对该项目设计优缺点的剖析,总结出了类似中小型石化项目总图设计应注意的各种事项,具体有以下三个方面:

了解工艺流程,并且深入了解各工艺装置间的关系,在保证工艺流程前提下,尽可能缩短工艺装置间的连接管线,使得管线连接便捷,以节省投资,减小能耗。尤其是否用特殊材料、贵重金属材料的装置。

在满足防火、防爆等要求前提下,结合给排水地下管线分布情况确定设计通道宽度,避免通道宽度设计不合适情况的发生。

总图设计不但要进行总平面布置方案的比较,还要对场地竖向设计方案和思路进行比较,以找出合理的平面、竖向设计方案。

结语

总之,对于中小型石化项目,在一定场地和环境条件下,经济、合理地进行总图设计,就是要使各建、构筑物相互间有序的组合,在满足工艺流程、安全距离、交通运输等条件下,研究和解决总平面布置和竖向设计中的各种矛盾及其与周围环境的关系,使其构成相互协调的有机整体,以充分利用土地、安全、环保,并尽可能节约项目建设成本及运营成本。

参考文献

① 《石油化工企业防火设计规范》(GB50160-2008);

② 《化工企业总图运输设计规范》(GB50489-2009);

厂区建设方案 篇五

关键词:高井热电厂,体型,景观,艺术设计

Abstract: With the development of social economy and people's spiritual life, the traditional industrial building surface has been unable to meet the development requirements of nowadays, Based on the continuation of the Beijing Gaojing gas turbine plant bidding project, starting from the main building block system, the annexe design and landscape design and the building art design give the exploration and analysis. This design is not only beautify the environment, but also greatly improve the rationality of the layout of the whole plant, with a convenient and comfortable working environment for these staffs and provide a reference for the similar power plant.

Keywords: Takai thermal power plant, shape, landscape, art design

中图分类号:[F213.2] 文献标识码:A 文章编码

1.概况

北京高井热电厂是大唐国际发电股份有限公司全资电厂,地处北京市西部的石景山区与门头沟区交界处,总装机660MW,始建于1959年。高井热电厂至今已运行了50年。为落实北京市发改委要求,最大限度提高机组供热能力,本次投标拟扩建三套F级燃气 — 蒸汽联合循环供热机组,工程初步定于2013年底投产。

我院参与了此次方案投标的设计。

2.设计创新理念和优化措施

随着城市化进程的加快,城市用地也在不断扩张,电厂庞大的建构筑物及特定的形象必定对城市的景观产生深远的影响,打造与当地生态园林城市相融合的去工业化景观电厂设计方案,力求电厂与城市和谐共处,是我们努力探求的方向。

按照建设资源节约型、环境友好型的社会要求,降低能源消耗和满足环保要求,我们在本电厂设计提出如下具体的优化措施:

1) 充分借鉴国内外的先进设计思想,采用超前和先进的设计理念及手段,结合去工业化设计要求,把高井电厂的建筑设计与城市景观紧密联系起来,打造与当地生态园林城市相融合的去工业化设计方案。

2) 严格控制用地指标、减少建筑面积、缩小建筑体积、降低工程造价,各项技术经济指标力争领先国内同类机组水平。

3) 充分利用厂房建筑空间,将使用功能相同或相近的分散设置的辅助车间和用房,整合布置在一起,既方便内部联系、便于集中管理,又可以减少辅助建筑数量,节省建筑交通和卫生等辅助面积。

4) 建筑物装修因地制宜。外装修美观大方并与当地环境和景观相协调;无人值班的建筑内装修以简单实用为原则,有人值班的场所,充分考虑人性化设计,适当提高标准,体现“以人为本”的管理理念。

3.主厂房建筑设计

主厂房由汽机房、集控楼、锅炉房、GIS及各变电器房组成,各功能房有各自的空间需求,建筑设计需要在满足这些需求的基础上,营造出让人过目不忘的主厂房建筑。为塑造大气、优美、新颖的建筑形象,使之成为厂区及城市周边区域内的标志性建筑,我们在总体方案设计中,做出了三种比较方案:

3.1 方案一:

图 1 投标推荐方案全厂鸟瞰图

方案一主厂房以具有北方气质的“磐石”为建筑设计的出发点,以黑、白、灰色石材为设计元素,结合各功能房间的净空要求,形成以汽机房为体块主轴、锅炉房及变电房为体块组成的建筑形态,体块间高低错落有致,既丰富了建筑形态,又提供多变的活动空间与停留空间;厂房采用全封闭设计,把变电器、汽轮机、锅炉等主要设备包裹在建筑表皮下,再利用百叶格栅、窗满足设备的通风要求。色调变幻的大片石材与玻璃、透气格栅形成鲜明的虚实对比,塑造出丰富的建筑立面;60米高的烟囱采用半透明彩色玻璃包裹,与下部的石材体块形成强烈对比,使之成为厂区的景观视觉焦点。

3.2 方案二:

方案二主厂房由简洁大气的体块构成,主立面由排富有韵律的柱廊组成,斜挑飞出的屋檐与微微侧倾的主厂房体块形成动势呼应,红色与蓝色的体块对比又富有和谐统一的美感,外部包裹的具有中国风的纹理彰显出大唐企业文化的特色。整体构图唯美大气,色块、材质的合理搭配使整个建筑物活泼耀眼。

3.3 方案三:

方案三根据各个空间的功能需求,在满足工艺要求的基础上,将厂房设计成为简洁,大方,与环境紧密结合的建筑形体,使之成为厂区及周边的标志性建筑,本设计采用以下设计手法:主厂房以片墙的手法来统一过多的功能体块,同时又对建筑进行了大体的分割,形成垂直向与水平向的分隔,在立面上片墙的出现使得立面变化更加丰富,产生更多的光影变化。

厂房采用白色的面砖做为主要材料,整个建筑都呈现的是一种纯净的白色,以绿色的自然景物做为衬托,使建筑具有一种超凡脱俗的气质,同时还采用了玻璃幕墙及格栅两种材料,形成虚实对比,使建筑更加有韵律感。厂房采用全封闭式的设计,将变压器,燃机机,锅炉等主要设备隐藏在建筑表皮之下,通过格栅,屋顶采光,通风等手段来满足各设备的工作需求。

厂前附属建筑设计

图 2 新建办公楼及河涌改造景观透视图

厂前建筑由综合办公楼、综合服务楼、地下冷冻站组成,其中综合办公楼为6层,综合服务楼为7层的宿舍及2层的餐厅与多功能厅。

该区与主厂房以及附属生产区通过道路及绿化庭院分隔,层次分明的绿化隔离带使其成为一个相对安静,靓丽整洁的区域,并对该区域的使用功能进行分析及优化:经东北角进厂公路进入厂区,映入眼帘的是一个由优美的椭圆水池统领的文化广场,通过建筑物与景观空间广场的相互交错,厂前空间序列逐步展开,配合园林绿化、水景、建筑小品的巧妙点缀,为进厂人们提供了一条有趣且丰富的视觉线路。

综合办公楼与综合服务楼组合设计,两功能间互不产生干扰,又有方便的联系。建筑中部为观光电梯间,服务区域功能分区更加合理,通过适当增加室外绿化面积,合理组织停车场地与道路交通的关系,令厂前服务区域空间疏密有致,开合有度,与环境更加协调。风景优美的厂前区将成为对内管理和对外联系的中心枢纽,也将成为展现优秀企业形象的靓丽窗口。多功能厅屋面设置了屋顶绿化草坪,可设置咖啡小桌等室外设施、增加员工的交流空间;住宿楼屋顶上设计了光伏发电装置,试整个建筑体成为真正的“绿色建筑”。

厂前区的景观设计还与厂外河道柳岸的景观进行统一的考虑,使厂区的景观与厂外环境融为一体。

5.厂区建筑的去工业化设计设想

以往的电厂设计是封闭式管理模式的,对环保的投入及对周边环境的考虑不够重视,随着城市的快速发展,以及人们对环境的日益关注,如何改善人们对工业建筑特别是电厂建筑的不良印象,让公众更多的了解发电厂的运作和人类与能源的依存关系,是摆在我们面前的一个全新课题,参考国外电厂的成功经验,我们建议把高井电厂建设成开放的环保的旅游型电厂,在厂区的发展用地建立电力科普馆,向公众展示电厂生产过程及先进设备,环境保护的设施,变害为利、变废为宝的实例,介绍当今各种清洁能源,向公众推广爱护环境、保护环境的意识,作为城市广大中小学生的电力教育基地,实现“经济型—环保型—旅游型电厂”的建设理念,强化了大唐集团追求绿色电厂的企业形象。

以上内容就是差异网为您提供的5篇《厂区建设方案》,您可以复制其中的精彩段落、语句,也可以下载DOC格式的文档以便编辑使用。

336 241170