高中生物知识点总结大全【最新4篇】

发布时间:

上学期间,大家都背过不少知识点,肯定对知识点非常熟悉吧!知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。为了帮助大家掌握重要知识点,以下内容是差异网为您带来的4篇《高中生物知识点总结大全》,亲的肯定与分享是对我们最大的鼓励。

高中生物学习知识点总结 篇一

细胞增殖

1、 减数分裂的结果是新产生的生殖细胞中染色体的数目是原始生殖细胞的一半。

2、 在减数分裂过程中,突触同源染色体相互分离,说明染色体具有一定的独立性。如果两条同源染色体随机移动到极点,不同的染色体对(非同源染色体)可以自由组合。

3、染色体数目的一半发生在第一次减数分裂期间。

4、 精原细胞经过减数分裂形成四个精子细胞,这些细胞经过复杂的变化形成精子。

5、 减数分裂后,只形成一个卵母细胞。

6、 减数分裂和受精对于维持每个生物体后代体细胞中染色体数目的恒定以及生物体的遗传和变异都是非常重要的。

3、基因的本质

1、 DNA的化学结构:

DNA是一种高分子化合物,它的基本成分是C、H、O、N、P等。

脱氧核苷酸,DNA的基本单位。每个脱氧核苷酸由三部分组成:脱氧核糖、含氮碱基和磷酸。

脱氧核苷酸有四种。在DNA水解酶的作用下,可以得到四种不同的核苷酸,腺嘌呤。

(一)deoxynucleotides;鸟嘌呤

(G) deoxynucleotides;胞嘧啶

(C) Deoxynucleotides;胸腺嘧啶

(T) Deoxynucleotides;

组成四种脱氧核苷酸的脱氧核糖和磷酸是相同的,但四种含氮碱基不同:ATGC;

(4) DNA是脱氧核苷酸链,由四个不同的脱氧核苷酸组成。

2、 DNA双螺旋结构:DNA双螺旋结构,脱氧核糖和磷酸排列在外侧边,形成两条主链(反向平行),构成DNA的基本骨架。两主链之间的横条为碱基对,设置在内侧。对应的两个碱基通过氢键连接形成碱基对。确定了一个DNA链上碱基的序列。根据互补碱基对的原理,确定了另一条链上碱基的序列。

3.DNA的特点:

稳定性:脱氧核糖和磷酸在两条DNA分子长链上交替排列的序列和碱基互补配对的方式是稳定的,从而导致DNA分子的稳定性。

(2)多样性:DNA碱基对序列是可变的。碱基对排列:4N (n为碱基对数目);

特异性:每个特定的DNA分子都有特定的碱基序列,这构成了DNA分子本身的严格特异性。

4、 碱基互补配对原理在碱基含量计算中的应用:

(1)在双链DNA分子中,两个非互补碱基之和相等,占整个分子中碱基总数的50%;

(2)在双链DNA中,一条链上嘌呤和嘧啶的和与其互补链上相应的比值是互反的。

(3)在双链DNA分子中,一条链上两个非互补碱基之和(A+T/G+C)与互补链上两个非互补碱基之和在整个分子中的比值相同。

5、 DNA复制:

(1)有丝分裂间隔和第一次减数分裂间隔;

(2)位置:主要在细胞核内;

(3)条件:a,模板:双亲DNA的两个母链;b、原料:四脱氧核苷酸;c、能源:(ATP);d是一系列的酶。没有它们,DNA复制是不可能的。

过程:

a 。解旋:首先,DNA分子利用细胞提供的能量,在解旋酶的作用下解旋两条扭曲的双线。这个过程被称为解旋。

B.合成子链:在相关酶的作用下,根据碱基互补配对的原理,以每个已解链(母链)为模板,以周围环境中的脱氧核苷酸为原料,合成与母链互补的子链。随着纺丝过程的进行,新合成的子链不断延长,每个子链与相应的母链缠绕成螺旋结构。

C.形成新的DNA分子;

特性:复制时松开螺钉,保留一半。

结果:一个DNA分子复制形成两个相同的DNA分子。

意义:使父母的遗传信息传递给后代,从而保持上一代与后代一定程度的连续性;

精确复制的原因是DNA可以自我复制,首先是因为它具有独特的双螺旋结构,可以提供复制的模板;其次,由于其互补的碱基配对能力,这可以使复制准确。

高中生物知识点总结 篇二

在现行的高考中,生物是以理科综合的形式出现,由于在卷面中生物所占分值较少,所以考题数量有限。全卷共7个题,覆盖高中三册内容,知识点多面广,一道选择题可能涉及好几章的内容,这给高中生物复习提出了更高的要求:对重点内容的把握要深浅得当,对非重点内容要“广积粮”。通过几年的高三教学,笔者就高中生物的复习提出自己的一点体会,即在复习中一定要注意知识的“点、线、面”结合,形成知识的系统化、网络化。高中生物复习中的“点”,即指具体的知识点;“线”就是以生物的某一生理过程为线索,贯穿知识点的链;“面”则是以点线为基础铺织而成的知识网络。通过第一轮的复习,学生对“点”已较为熟悉,但掌握的知识是零散的,不系统的。学生要实现从知识向能力的转变常常需要在老师的复习指导下完成,而由知识的点向线、面转变则是专题复习的最终目标。下面笔者就“植物的个体发育”的专题复习谈一点看法。

高等植物的个体发育,作为专题复习来说,不能仅限于教科书中“发育”那一节,也就是不能再停留在点上。根据个体发育的概念,经历了如下过程:即从受精卵细胞分裂开始?邛形成胚及种子?邛种子萌发进入胚后发育?邛植物的新陈代谢?邛发育成成熟的个体等过程。在复习中,基础知识是点,上述知识链就是线,以此线为线索,将所学各板块知识联系起来,并作适当的拓展和延伸,形成连贯的知识体系,就形成了点、线铺就的面。因此,可将该大专题分为如下小专题:

一、种子的形成:种子的形成包括胚的发育、胚乳的发育和种子的形成三部分

由减数分裂形成的精子和卵细胞,经过受精作用,形成受精卵,这个过程在胚珠的胚囊内完成。在形成受精卵的同时,一个精子和两个极核受精,形成受精极核,这就是高等植物的双受精现象。受精极核发育成胚乳,而受精卵则发育成胚。

1、胚的形成:(以荠菜为例)荠菜个体发育的起点是受精卵。受精卵经过短暂的休眠,进行第一次有丝分裂,形成基细胞(靠近珠孔)和顶细胞(远离珠孔),基细胞经过几次有丝分裂形成一系列细胞,构成胚柄。胚柄的作用是:①从周围组织中吸收并运送营养物质,供给球状胚体发育;

②产生一些激素类物质,促进胚体的发育。胚体发育完成后,胚柄就退化消失。顶细胞经过多次有丝分裂,形成球状胚体,最后形成具有子叶、胚芽、胚轴和胚根的荠菜的胚。

2、胚乳的发育:受精极核不经过休眠,就开始进行核的有丝分裂,形成很多游离的胚乳核,再形成细胞壁,分隔生成胚乳细胞,整个组织称为胚乳。

3、种子的形成:胚和胚乳发育过程中,珠被发育成种皮,整个胚珠发育成种子。对于双子叶植物,胚乳的营养全部转移到子叶中,所以又称无胚乳种子。而单子叶植物,胚乳中

的营养一直保留,未转移到子叶中,形成有胚乳种子。

例1:荠菜受精卵至少经过多少次有丝分裂,才能形成具有16个细胞的球状胚体?

A、4次B、5次C、6次D、7次

分析:由于球状胚体由顶细胞发育而来,故共需要5次有丝分裂。例2:观察分析发育着的胚株结构示意图,能够得出的结论有

A.②和③的发育起点相同

B.在正常情况下,若①的基因型为aa,②的基因型为Aa,则④的基因型为AAaC.④处细胞中的染色体有2/3来自雌配子D.②将发育成种子,①将发育成种皮分析:此题的关键是弄清种子各部分的发育来源,以及高等植物的双受精作用,胚及胚乳基因型等知识点,综合考查了识图能力和分析能力。答案A、C拓展延伸、种子和果实形成过程中基因型及子代数分析

由于种皮、果皮的遗传物质均只来源于母本,而受精卵、受精极核则来源于双亲,所以植物正反交的结果,其基因型不同。

例2:番茄的红果(A)对黄果(a)为显性,许多杂合的红果番茄自花授粉,结了1200个番茄,其中黄果番茄有多少个?

分析:P:♀红果(AA)×♂黄果(aa)↓

F1红果(结在亲本上,其内种子的胚基因型Aa,胚乳的

基因型为AAa,果皮和种皮的基因型均为AA。)↓

F2?(果实结在F1植株上,仍为红色,其

内种子的胚基因型为1AA:2Aa:1aa,

果皮和种皮的基因型均为Aa。)

注意:基因型同母本的结构其表现型全部滞后一年表现。思考:利用正交和反交的原理还可以判断什么遗传现象?

练习:豌豆灰种皮(G)对白种皮(g)为显性,黄子叶(Y)对绿子叶(y)为显性。每对

性状的杂合体自交后代均表现3∶1的性状分离比。以上种皮和子叶颜色的分离比分别来自以下哪代植物群体所结种子的统计?A、B、C、D、

F1植株和F1植株F2植株和F2植株F1植株和F2植株F2植株和F1植株

二、种子的萌发及幼苗的形成

该阶段常与细胞呼吸相联系,是高考的重要考点,更是热考点。种子从萌发到形成早期

幼苗尚不能进行光合作用时,能量靠子叶或胚乳中储存的有机物供给,此过程中种子细胞内进行着复杂的代谢。下面从以下几方面阐述:

1、有机物的变化

由于种子在萌发过程中,代谢(主要是呼吸作用)增强,消耗了大量的有机物,而光合作用尚不进行,所以有机物总量减少,所含能量也减少;但在总量减少的同时,有机物种类,特别是小分子有机物的种类会大大增加,这样就能满足种子萌发过程中构建新细胞的需要,这也是种子中储存的有机物的利用过程。对于单子叶植物,这个过程由胚乳供能,双子叶植物则由子叶供能。由此说明,黄豆萌发形成豆芽,能量虽然减少,但所含营养更全面。

2、吸水方式及水含量变化

在种子萌发过程中,鲜重增加,即主要是自由水的含量增加,为呼吸作用及其他代谢过程提供适宜的水环境,此时至细胞形成中央大液泡以前均以吸胀吸水为主。由于蛋白质的亲水性比淀粉和纤维素大,故相同质量的豆类种子比小麦种子萌发所需水多。

3、。种子萌发过程中细胞DNA含量变化

由于种子萌发过程中细胞的分裂均为有丝分裂,故每个细胞的DNA含量不变。4、种子萌发过程中活动加强的几种细胞器

种子萌发过程进行旺盛的细胞分裂,消耗能量多,故活动加强的细胞器有核糖体、高尔基体和线粒体。

5、种子萌发过程中细胞呼吸方式的变化

在种皮未破裂前,细胞主要进行无氧呼吸,种皮破裂后,细胞主要进行有氧呼吸,这也是与种皮破裂后胚细胞的快速分裂需更多能量相适应的。若此时种子仍处于较多水环境,则易烂根烂芽。因此生产上种子催芽时应注意通风透气就是这个道理。

例3:科研人员在研究某种植物时,从收获的种子开始作鲜重测量,作出如下曲线。下列对曲线变化原因的分析不正确的是

A、oa段鲜重减少的原因主要是自由水的减少

B、ab段种子的细胞基本处于休眠状态,物质变化较小C、bc段鲜重增加的原因是有机物增加,种子开始萌发

D、c以后增幅较大,既有水的增加,又有有机物的'增加分析:若bc段种子开始萌发,有机物不会增加,故C错误。

例4:番茄种子萌发露出两片子叶后,生长出第一片新叶,这时子叶仍有功能。对一批长出第一片新叶的番茄幼苗进行不同的处理,然后放在仅缺N元素的培养液中培养,并对子

叶进行观察,最先表现出缺N症状的幼苗是

A、前去根尖的幼苗B、前去一片子叶的幼苗

B、前去两片子叶的幼苗D、完整幼苗

分析:注意题干中子叶仍有功能,说明子叶中N元素可以转移

练习1:下图表示小麦种子萌发时总干重和胚乳干重的变化曲线,据图可以推断;A、萌发种子的鲜重随时间稳定增加B、萌发时由于呼吸作用强,产生大量的水蒸气C、种子的重量主要是贮藏在种子内的水分D、贮藏在种子内的养料被胚用于萌发

练习2:(20xx年广东高考大综合)下图是种子萌发过程中水分吸收变化规律曲线,据图回答:

种子萌发过程中的水分吸收可分为三个分阶段,第一阶段是吸胀期,种子迅速吸水。第二阶段是吸水停滞期。第三阶段是重新迅速吸水期,主要通过渗透吸收水分。第三阶段由于胚的迅速生长,胚根突破种皮,______摇呼吸加强,对于死亡或休眠的种子,吸水作用只停留在第______阶段。

三、幼苗形成后的代谢

植物幼苗形成后的代谢主要包括水分代谢,矿质代谢,光合作用和呼吸作用(即有机物和能量代谢)。这个过程教材以大量的篇幅进行了详细讲解,我就不再叙述其知识点,这里总结其知识网络如下:

从上面的知识网络可以看出,植物从土壤中获得所需水分和矿质元素,通过光合作用合成有机物储存能量,再通过细胞呼吸分解有机物并释放能量,供生命活动需要。这样,植物的生长也逐渐由营养生长过渡为生殖生长,并形成能进行减数分裂的生殖器官花。此时,一个成熟的个体长成,完成了植物个体发育的一生。

通过对植物个体发育三大生长阶段的讲解,形成知识点、线、面的巧妙结合,使学生对“一颗种子如何发育成了一株能开花结果的植株”这个神奇的自然现象有了更深刻的理性认识,并能在不同的题设情景里熟练运用所学知识,收到事半功倍的效果。

高中生物知识点总结 篇三

一、细胞的衰老

1、个体衰老与细胞衰老的关系

单细胞生物体,细胞的衰老或死亡就是个体的衰老或死亡。

多细胞生物体,个体衰老的过程就是组成个体的细胞普遍衰老的过程。

2、衰老细胞的主要特征:

1)在衰老的细胞内水分、。

2)衰老的细胞内有些酶的活性。

3)细胞内的会随着细胞的衰老而逐渐积累。

4)衰老的细胞内、速度减慢,细胞核体积增大,固缩,染色加深。

5)通透性功能改变,使物质运输功能降低。

3、细胞衰老的学说:(1)自由基学说(2)端粒学说

二、细胞的凋亡

1、概念:由基因所决定的细胞自动结束生命的过程。

由于细胞凋亡受到严格的由遗传机制决定的程序性调控,所以也常常被称为细胞编程性死亡

2、意义:完成正常发育,维持内部环境的稳定,抵御外界各种因素的干扰。

3、与细胞坏死的区别:细胞坏死是在种种不利因素影响下,由于细胞正常代谢活动受损或中断引起的细胞损伤和死亡。

细胞凋亡是一种正常的自然现象。

轻松背诵生物的方法

(1)简化记忆法

分析生物教材,找出要点,将知识简化成有规律的几个字来帮助记忆。例如DNA的分子结构可简化为“五四三二一”,即五种基本元素,四种基本单位,每种单位有三种基本物质,很多单位形成两条脱氧核酸链,成为一种规则的双螺旋结构。

(2)联想记忆法

根据生物学科内容,巧妙地利用联想帮助记忆。例如记血浆的成分,可以和厨房里的食品联系起来,记住水、蛋、糖、盐就可以了(水即水,蛋是蛋白质,糖指葡萄糖,盐代表无机盐)。

(3)对比记忆法

在生物学学习中,有很多相近的名词易混淆。对于这样的内容,可运用对比法记忆。对比法即将有关的名词单列出来,然后从范围、内涵、外延,乃至文字等方面进行比较,存同求异,找出不同点。这样反差鲜明,容易记忆。例如同化作用与异化作用、有氧呼吸与无氧呼吸、激素调节与神经调节、物质循环与能量流动等等。

(4)纲要记忆法

生物学中有很多重要的、复杂的内容不容易记忆。可将这些知识的核心内容或关键词语提炼出来,作为知识的纲要,抓住了纲要则有利于知识的记忆。例如高等动物的物质代谢就很复杂,但它也有一定规律可循,无论是哪一类有机物的代谢,一般都要经过“消化”、“吸收”、“运输”、“利用”、“排泄”五个过程,这十个字则成为记忆知识的纲要。

(5)衍射记忆法

通过思维的发散过程,把与之有关的其他知识尽可能多地建立起联系。这种方法多用于章节知识的总结或复习,也可用于将分散在各章节中的相关知识联系在一起。例如,以细胞为核心,可衍射出细胞的概念、细胞的发现、细胞的学说、细胞的种类、细胞的成分、细胞的结构、细胞的功能、细胞的分裂等知识。

孟德尔实验成功的原因

(1)正确选用实验材料:㈠豌豆是严格自花传粉植物(闭花授粉),自然状态下一般是纯种

㈡具有易于区分的性状

(2)由一对相对性状到多对相对性状的研究(从简单到复杂)

(3)对实验结果进行统计学分析

(4)严谨的科学设计实验程序:假说-------演绎法

高中生物知识点总结 篇四

一、从亚显微结构水平到分子水平

细胞核→染色体→DNA→基因→遗传信息→mRNA→蛋白质(性状)

[例]间要论述染色体、DNA、基因、遗传信息、遗传密码、蛋白质(性状)和生物多样性之间的关系。

染色体由DNA和蛋白质组成,是DNA的主要载体,而不是全部载体,因其还存在于真核细胞的叶绿体和线粒体,原核生物和病毒中的DNA不位于染色体上,DNA是染色体的主要组成成分。

DNA分子上具有遗传效应的、控制生物性状的片段叫基因,DNA分子也存在没有遗传效应的片段叫基因间区,DNA上有成百上千个基因。基因位于DNA分子上,也位于染色体上,并在染色体上呈线性排列,占据一定的“座位”(位点),在减数分裂和有丝分裂过程中,随染色体的移动而移动,减数分裂过程中染色体互换,同源染色体的分离,非同源染色体自由组合是基因的三个遗传规律和伴性遗传的细胞学基础。

DNA分子基因上的脱氧核苷酸的排列顺序叫遗传信息,并不是DNA分子上所有脱氧核苷酸的排列顺序叫遗传信息(基因间区不含有遗传信息),基因所在的DNA的片段有两条链,只有一条链携带遗传信息叫有义链,另一条配对链叫无义链,DNA双链中的一条链对某个基因来说是有义链,而对另一个基因来说,可能是无义链。

遗传密码是指在DNA的转录过程中,以DNA(基因)上一条有义链(携带遗传信息)为模板,按照碱基互补配对原则(AU,GC)形成的信使RNA单链上的碱基排列顺序,遗传学上把信使RNA上决定一个氨基酸的三个相邻的碱基叫“密码子”,也叫“三联体密码子”,和遗传密码的含义是一致的,应当注意,20种氨基酸密码表中每个氨基酸所对应三个字母的碱基排序是指定位在信使RNA上的,并不是位于DNA或转运RNA(叫反密码子)上碱基排列顺序。

性状是指一个生物的任何可以鉴别的形态或生理特征,是遗传和环境相互作用的。结果,主要由蛋白质体现出来。生物的性状受基因控制,是基因通过控制蛋白质的合成来体现的。

DNA分子中碱基的排列顺序千变万化,一个DNA分子中的一条多核苷酸链有100个四种不同的碱基,它们的可能排列方式是4种。而事实上DNA分子中碱基数量是成千上万,其可能的排列方式几乎是无限的。DNA分子的多样性,可以从分子水平上说明生物的多样性和个体之间的差异的原因。

二、以人类遗传病为例分析遗传的三个基本规律和伴性遗传之间的区别和联系

[例]下图是六个家族的遗传图谱,请据图回答:

(1)可判断为X染色体的显性遗传的是图;

(2)可判断为X染色体的隐性遗传的是图;

(3)可判断为Y染色体遗传的是图;

(4)可判断为常染色体遗传的是图。

[解析]按Y染色体遗传→X染色体显性遗传→X染色体隐性遗传→常染色体显性遗传→常染色体隐性遗传的顺序进行假设求证。

D图属Y染色体遗传,因为其病症是由父传子,子传孙,只要男性有病,所有的儿子都患病。

B图为X染色体显性遗传,因为只要父亲有病,所有的女儿都是患病者。C和E图是X染色体隐性遗传,因为C图中,母亲患病,所有的儿子患病,而父亲正常,所有的女儿都正常;E图中,男性将病症通过女儿传给他的外孙。

A和F图是常染色体遗传,首先通过父母无病而子女有患病者判断出是隐性遗传,再根据父母无病,而两个家系中都有女儿患病而判断出是常染色体遗传。

[例]下图为某家族性疾病的遗传图谱。请据图回答:若Ⅲ1与Ⅲ5近亲婚配,他们的孩子患此病的概率为(基因符号用A、a)表示。

[解析]本题主要考查对系谱图的分析判断和简单概率计算能力,解题关键为运用多种遗传病的遗传特点去分析人手。

(1)在该遗传系谱中,发病率比较高,占子代的1/2,且子代之中有患者,则双亲之中必定有患者,儿子是患者则其母必定是患者,且患者中女性多于男性。所以该病的遗传为显性伴性遗传。

(2)Ⅲ1个体的父亲表现型正常,是隐性个体,基因型为XY,他的X染色体上的基因必定遗传给他女儿Ⅲ1个体,Ⅲ1个体又表现为患者,所以Ⅲ1个体的基因为XX,Ⅲ5个体为隐性个体,基因型XY。

(3)画遗传图解(略),Ⅲl与Ⅲ5婚配,他们孩子患病的概率为1/2。

三、以染色体概念系统为例,分析染色体与遗传变异进化之间的内在联系

[例]下图是我国育种专家鲍文奎等培育出的异源八倍体小黑麦的过程图。

(1)A、B、D、R四个字母代表。

(2)Fl之所以不育,是因为。

(3)F1人工诱变成多倍体的常用方法是。

(4)八倍体小黑麦的优点是。

(5)试从进化角度,谈谈培育成功的重要生物学意义。

[解析]解答本题的关键是运用染色体组整倍性变异的原理,联系减数分裂、受精作用、远缘杂交、秋水仙素作用机制,自然选择和人工选择等众多相应知识点综合分析解答。阐明有利变异为进化提供原材料,通过人工选择加快培育新物种的进程这一观点。

答案

(1)4个染色体组

(2)F1产生配子时,染色体不能两两配对形成四分体

(3)秋水仙素处理植物萌发的种子或幼苗生长点,使其染色体加倍

(4)耐土地贫瘠、耐寒冷、面粉白、蛋白含量高

(5)我国育种专家鲍文奎教授培育成功的小黑麦品种,是人工创造异源多倍体很成功的实例。小黑麦本来是自然界没有的物种,科学家利用远缘杂交,通过人工选择在短短的十几年就创造出这个新物种。若靠大自然的恩赐,通过自然选择形成高等植物的一个新物种需要漫长的时间。由此可见,人工选[www.chayi5.com]择大大地加快了物种的进化。

☆生物的遗传是细胞核与细胞质共同作用的结果。

1.细胞质遗传

①主要特点:母系遗传;后代不出现一定的分离比。

②原因:受精卵中的细胞质几乎全部来自卵细胞;减数分裂时,细胞质中的遗传物质随机地、不均等地分配到卵细胞中。

③物质基础:叶绿体、线粒体等细胞质结构中的DNA。

2.从性遗传是指由常染色体上基因控制的性状,在表现型上受个体性别影响的现象。

①是指由常染色体上基因控制的性状,在表现型上受个体性别影响的现象。

②如绵羊的有角和无角。这种影响是通过性激素起作用。

上面内容就是差异网为您整理出来的4篇《高中生物知识点总结大全》,希望对您有一些参考价值。

316 90231