最新高三物理知识点总结大全(通用10篇)

发布时间:

在年少学习的日子里,是不是经常追着老师要知识点?知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。那么,都有哪些知识点呢?这次漂亮的小编为亲带来了10篇《最新高三物理知识点总结大全》,在大家参考的同时,也可以分享一下差异网给您的好友哦。

高三物理知识点总结 篇一

1、磁场

(1)磁场:磁场是存在于磁体、电流和运动电荷周围的一种物质。永磁体和电流都能在空间产生磁场。变化的电场也能产生磁场。

(2)磁场的基本特点:磁场对处于其中的磁体、电流和运动电荷有力的作用。

(3)磁现象的电本质:一切磁现象都可归结为运动电荷(或电流)之间通过磁场而发生的相互作用。

(4)安培分子电流假说------在原子、分子等物质微粒内部,存在着一种环形电流即分子电流,分子电流使每个物质微粒成为微小的磁体。

(5)磁场的方向:规定在磁场中任一点小磁针N极受力的方向(或者小磁针静止时N极的指向)就是那一点的磁场方向。

2、磁感线

(1)在磁场中人为地画出一系列曲线,曲线的切线方向表示该位置的磁场方向,曲线的疏密能定性地表示磁场的弱强,这一系列曲线称为磁感线。

(2)磁铁外部的磁感线,都从磁铁N极出来,进入S极,在内部,由S极到N极,磁感线是闭合曲线;磁感线不相交。

(3)几种典型磁场的磁感线的分布:

①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱。

②通电螺线管的磁场:两端分别是N极和S极,管内可看作匀强磁场,管外是非匀强磁场。

③环形电流的磁场:两侧是N极和S极,离圆环中心越远,磁场越弱。

④匀强磁场:磁感应强度的大小处处相等、方向处处相同。匀强磁场中的磁感线是分布均匀、方向相同的平行直线。

3、磁感应强度

(1)定义:磁感应强度是表示磁场强弱的物理量,在磁场中垂直于磁场方向的通电导线,受到的磁场力F跟电流I和导线长度L的乘积IL的比值,叫做通电导线所在处的磁感应强度,定义式B=F/IL。单位T,1T=1N/(A·m)。

(2)磁感应强度是矢量,磁场中某点的磁感应强度的方向就是该点的磁场方向,即通过该点的磁感线的切线方向。

(3)磁场中某位置的磁感应强度的大小及方向是客观存在的,与放入的电流强度I的大小、导线的长短L的大小无关,与电流受到的力也无关,即使不放入载流导体,它的磁感应强度也照样存在,因此不能说B与F成正比,或B与IL成反比。

(4)磁感应强度B是矢量,遵守矢量分解合成的平行四边形定则,注意磁感应强度的方向就是该处的磁场方向,并不是在该处的电流的受力方向。

4、地磁场:地球的磁场与条形磁体的磁场相似,其主要特点有三个:

(1)地磁场的N极在地球南极附近,S极在地球北极附近。

(2)地磁场B的水平分量(Bx)总是从地球南极指向北极,而竖直分量(By)则南北相反,在南半球垂直地面向上,在北半球垂直地面向下。

(3)在赤道平面上,距离地球表面相等的各点,磁感强度相等,且方向水平向北。

5★。安培力

(1)安培力大小F=BIL。式中F、B、I要两两垂直,L是有效长度。若载流导体是弯曲导线,且导线所在平面与磁感强度方向垂直,则L指弯曲导线中始端指向末端的直线长度。

(2)安培力的方向由左手定则判定。

(3)安培力做功与路径有关,绕闭合回路一周,安培力做的功可以为正,可以为负,也可以为零,而不像重力和电场力那样做功总为零。

6、★洛伦兹力

(1)洛伦兹力的大小f=qvB,条件:v⊥B。当v∥B时,f=0。

(2)洛伦兹力的特性:洛伦兹力始终垂直于v的方向,所以洛伦兹力一定不做功。

(3)洛伦兹力与安培力的关系:洛伦兹力是安培力的微观实质,安培力是洛伦兹力的宏观表现。所以洛伦兹力的方向与安培力的方向一样也由左手定则判定。

(4)在磁场中静止的电荷不受洛伦兹力作用。

7、★★★带电粒子在磁场中的运动规律

在带电粒子只受洛伦兹力作用的条件下(电子、质子、α粒子等微观粒子的重力通常忽略不计),

(1)若带电粒子的速度方向与磁场方向平行(相同或相反),带电粒子以入射速度v做匀速直线运动。

(2)若带电粒子的速度方向与磁场方向垂直,带电粒子在垂直于磁感线的平面内,以入射速率v做匀速圆周运动。①轨道半径公式:r=mv/qB②周期公式:T=2πm/qB

8、带电粒子在复合场中运动

(1)带电粒子在复合场中做直线运动

①带电粒子所受合外力为零时,做匀速直线运动,处理这类问题,应根据受力平衡列方程求解。

②带电粒子所受合外力恒定,且与初速度在一条直线上,粒子将作匀变速直线运动,处理这类问题,根据洛伦兹力不做功的特点,选用牛顿第二定律、动量定理、动能定理、能量守恒等规律列方程求解。

(2)带电粒子在复合场中做曲线运动

①当带电粒子在所受的重力与电场力等值反向时,洛伦兹力提供向心力时,带电粒子在垂直于磁场的平面内做匀速圆周运动。处理这类问题,往往同时应用牛顿第二定律、动能定理列方程求解。

②当带电粒子所受的合外力是变力,与初速度方向不在同一直线上时,粒子做非匀变速曲线运动,这时粒子的运动轨迹既不是圆弧,也不是抛物线,一般处理这类问题,选用动能定理或能量守恒列方程求解。

③由于带电粒子在复合场中受力情况复杂运动情况多变,往往出现临界问题,这时应以题目中“”、“”“至少”等词语为突破口,挖掘隐含条件,根据临界条件列出辅助方程,再与其他方程联立求解。

物理学是研究自然界中物理现象的科学。这些现象包括力现象,声音现象,热现象,电和磁现象,光现象,原子和原子核的运动变化等现象。学习物理的主要任务就要研究这些现象,找出其中的规律,了解产生这些现象的原因,并使同学们知道和掌握,以更好地为生产和生活服务。我们知道,我们周围的世界就是由物质构成的,许多生产和生活现象都是物理现象,要学好物理,就要认真观察周围存在的各种物理现象。

高考高三物理全年复习技巧总结 篇二

1、图象题。

人类表示信息是从图象开始起源的,从图画演变为文字,进而抽象出数学公式,看懂图表、动漫是从幼儿开始的,是生活的基本能力。近几年各地高考图象的数量逐年增加,图象表示物理问题比文字和公式具有更大的优越性,能形象地描述物理状态、过程和规律,能够把一个问题的多个相关因素同时展现出来,给我们分析问题提供直观、清晰的物理图景,既有助于我们对相关概念、规律的理解和记忆,又有助于我们正确地把握相关物理量之间的定性、定量关系。因此要习惯用图象表示问题,处理数据。物理图象不同于数学图象的是一般两坐标轴表示两个具有实际意义的物理量,首先要看清坐标轴,理解图象表示的是谁随谁的变化,理解正、负、斜率、面积、截距、交点的物理意义,其次把图形转化为实际的物理过程,进而理解图象的意义并解答问题。

2、实验探究题。

从近几年高考对实验考查的结果来看,实验的得分率一直很低。物理是以实验为基础的学科,首先要树立物理规律来源于实验、来源于生活的理念,实验是第一的,规律是第二的。由于高考采用笔试的形式,以“题”考“实验”,如果实际复习中也以“题”的形式来复习“实验”,就很难突破实验的抽象和实际的操作场景的模拟。因此要结合实验仪器,有针对地做,在做中思,在思中做,这也是教学做合一的思想。

实验思想、技能和方法是高考实验考查的三大重点,电学考查仪表读数、实物图连接、电表选取、电路设计、方案的筛选、原理的迁移、数据的处理,可以很好地考查多项实验能力。科学探究的六步为:提出问题,猜想与假设,制定计划与设计实验,进行实验与收集数据,分析与论证,交流与合作。探究与实验相结合使二者都具有了实际意义。每一个实验突出的探究环节不尽相同,关键是从实验原理出发,进行设计和变化,培养的是科学的精神和实事求是的态度,如20xx年的实验题,必须对规定的实验理解原理,有实际操作经验,才能进行实验能力的迁移。

3、新科技、新技术应用题。

这类题多以当今社会热点和高新科技动态为背景,信息量一般较大、题干较长,一般是描述一种装置或某一理论的基本精神,再和中学物理知识连接。表面看来给人一种很复杂的感觉,但抽象出物理模型时就会有一种“现象大、问题小”的转折。要求学生在考场上对新情景新信息完成现场学习,将信息进行有效提炼、加工、建模,与原有知识衔接来解决问题。这类问题不仅对学生的创新能力是一个考查,而且对学生的心理素质也是一个考验。因此我们在复习中要多关注时事热点和科技新成果的报道,特别是20xx年“神七”飞船实验成功、绿色奥运成功举办,再如登月计划、纳米科技、高温超导等。如20xx年高考山东卷18题的同步卫星、23题的诺贝尔奖“磁阻效应”等。

高考高三物理全年复习技巧总结 篇三

解题习惯的养成并非一朝一夕可以完成的,因而同学们在第一轮复习中要对自己有一个清晰的认识,给自己一个明确的定位。那么,什么才是良好的解题习惯呢?简单的说,分为五个环节:审题-受力分析-运动分析-列式求解-验证。要养成这样的习惯,学生需要跟进教师,牢记公式和解题方法。除此之外,还有答题中的公式的书写方式,单位的换算,各物理量字母的使用等等都需要量的积累才能运用的游刃有余。

基础知识的掌握是提高物理成绩的关键。而必要的审题技巧也是必不可少的法宝。1、认真仔细,对题目要细致考察,不仅是文字上,在插图中也要多角度无遗漏的收集信息。2、咬文嚼字,题目的关键字往往就是解题的重点。例如恰好与刚好,至多与至少,变化率与变化量,增加了多少与增加到多少等等。在一轮复习中就要养成深入挖掘隐含条件的意识,利用隐含信息建立解题思路。

高考考的是能力,在掌握知识的同时,要领悟其中的学科方法,培养独立思考的能力。在一轮的复习过程中要适当的将物理方法归纳总结。例如:整体法、隔离法、等效法、模型法等等,使之有利于自己消化吸收,从而提高解题能力和技巧。

清楚高考的考点,不可平均用力针对高考的一轮复习,有效的得分是关键。对于高考考点的把握至关重要。就北京高考而言,近年来题目设置选择题8道、实验1道、计算题3道。选择题有一些必考题目包括光学、原子物理、机械振动、机械波、分子动理论、万有引力、电磁场、交流电、电磁感应等,北京的最后一题往往是推陈出新的,考察的是分析问题和解决问题的能力。按照这样的思路,新东方老师建议同学们要清楚重点在哪里,哪个知识点只考选择?哪个知识点是计算题经常出现的?必须做到心中有数!

1、认真审视题中的每一个字,千万不要经验主义;

2、根据题目选择适当的方程;

3、注意细节问题:估算几位小数,单位的使用,g取9.8还是10,作图要用尺,写错要用双横线划掉,答案不要超出扫描框等。

十、及时整理错题集每次出现错题,往往都是在知识学习过程中所产生的知识遗漏。一轮的复习就是要无遗漏的复习知识点,弥补漏洞很好的方式就是错题集。北京新东方优能一对一部高中物理老师建议同学们除了将做错题目抄下做出改正过来,还要将做错的题目进行整理和分类,比如将做错题目按课本章节的顺序进行分类整理,或者将做错题目按错误的原因进行分类整理。这样,便于后期有目的性、有针对性的进行复习!

高三物理基础知识点 篇四

1、热现象:与温度有关的现象叫做热现象。

2、温度:物体的冷热程度。

3、温度计:要准确地判断或测量温度就要使用的专用测量工具。

4、温标:要测量物体的温度,首先需要确立一个标准,这个标准叫做温标。

(1)摄氏温标:单位:摄氏度,符号℃,摄氏温标规定,在标准大气压下,冰水混合物的温度为0℃;沸水的温度为100℃。中间100等分,每一等分表示1℃。

(a)如摄氏温度用t表示:t=25℃

(b)摄氏度的符号为℃,如34℃

(c)读法:37℃,读作37摄氏度;–4.7℃读作:负4.7摄氏度或零下4.7摄氏度。

(2)热力学温标:在国际单位之中,采用热力学温标(又称开氏温标)。单位:开尔文,符号:K。在标准大气压下,冰水混合物的温度为273K。

热力学温度T与摄氏温度t的换算关系:T=(t+273)K。0K是自然界的低温极限,只能无限接近永远达不到。

(3)华氏温标:在标准大气压下,冰的熔点为32℉,水的沸点为212℉,中间180等分,每一等分表示1℉。华氏温度F与摄氏温度t的换算关系:F=5t+32

5、温度计

(1)常用温度计:构造:温度计由内径细而均匀的玻璃外壳、玻璃泡、液面、刻度等几部分组成。原理:液体温度计是根据液体热胀冷缩的性质制成的。常用温度计内的液体有水银、酒精、煤油等。

6、正确使用温度计

(1)先观察它的测量范围、最小刻度、零刻度的位置。实验温度计的范围为-20℃-110℃,最小刻度为1℃。体温温度计的范围为35℃-42℃,最小刻度为0.1℃。

(2)估计待测物的温度,选用合适的温度计。

(3)温度及的玻璃泡要与待测物充分接触(但不能接触容器底与容器侧面)。

(4)待液面稳定后,才能读数。(读数时温度及不能离开待测物)。

高三物理知识点总结 篇五

1、分子动理论

(1)物质是由大量分子组成的分子直径的数量级一般是10-10m。

(2)分子永不停息地做无规则热运动。

①扩散现象:不同的物质互相接触时,可以彼此进入对方中去。温度越高,扩散越快。②布朗运动:在显微镜下看到的悬浮在液体(或气体)中微小颗粒的无规则运动,是液体分子对微小颗粒撞击作用的不平衡造成的,是液体分子永不停息地无规则运动的宏观反映。颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。

(3)分子间存在着相互作用力

分子间同时存在着引力和斥力,引力和斥力都随分子间距离增大而减小,但斥力的变化比引力的变化快,实际表现出来的是引力和斥力的合力。

2、物体的内能

(1)分子动能:做热运动的分子具有动能,在热现象的研究中,单个分子的动能是无研究意义的,重要的是分子热运动的平均动能。温度是物体分子热运动的平均动能的标志。

(2)分子势能:分子间具有由它们的相对位置决定的势能,叫做分子势能。分子势能随着物体的体积变化而变化。分子间的作用表现为引力时,分子势能随着分子间的距离增大而增大。分子间的作用表现为斥力时,分子势能随着分子间距离增大而减小。对实际气体来说,体积增大,分子势能增加;体积缩小,分子势能减小。

(3)物体的内能:物体里所有的分子的动能和势能的总和叫做物体的内能。任何物体都有内能,物体的内能跟物体的温度和体积有关。

(4)物体的内能和机械能有着本质的区别。物体具有内能的同时可以具有机械能,也可以不具有机械能。

3、改变内能的两种方式

(1)做功:其本质是其他形式的能和内能之间的相互转化。(2)热传递:其本质是物体间内能的转移。

(3)做功和热传递在改变物体的内能上是等效的,但有本质的区别。

4、★能量转化和守恒定律

5★。热力学第一定律

(1)内容:物体内能的增量(ΔU)等于外界对物体做的功(W)和物体吸收的热量(Q)的总和。

(2)表达式:W+Q=ΔU

(3)符号法则:外界对物体做功,W取正值,物体对外界做功,W取负值;物体吸收热量,Q取正值,物体放出热量,Q取负值;物体内能增加,ΔU取正值,物体内能减少,ΔU取负值。

6、热力学第二定律

(1)热传导的方向性

热传递的过程是有方向性的,热量会自发地从高温物体传给低温物体,而不会自发地从低温物体传给高温物体。

(2)热力学第二定律的两种常见表述

①不可能使热量由低温物体传递到高温物体,而不引起其他变化。

②不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化。

(3)永动机不可能制成

①第一类永动机不可能制成:不消耗任何能量,却可以源源不断地对外做功,这种机器被称为第一类永动机,这种永动机是不可能制造成的,它违背了能量守恒定律。

②第二类永动机不可能制成:没有冷凝器,只有单一热源,并从这个单一热源吸收的热量,可以全部用来做功,而不引起其他变化的热机叫做第二类永动机。第二类永动机不可能制成,它虽然不违背能量守恒定律,但违背了热力学第二定律。

7、气体的状态参量

(1)温度:宏观上表示物体的冷热程度,微观上是分子平均动能的标志。两种温标的换算关系:T=(t+273)K。

绝对零度为-273.15℃,它是低温的极限,只能接近不能达到。

(2)气体的体积:气体的体积不是气体分子自身体积的总和,而是指大量气体分子所能达到的整个空间的体积。封闭在容器内的气体,其体积等于容器的容积。

(3)气体的压强:气体作用在器壁单位面积上的压力。数值上等于单位时间内器壁单位面积上受到气体分子的总冲量。

①产生原因:大量气体分子无规则运动碰撞器壁,形成对器壁各处均匀的持续的压力。

②决定因素:一定气体的压强大小,微观上决定于分子的运动速率和分子密度;宏观上决定于气体的温度和体积。

(4)对于一定质量的理想气体,PV/T=恒量

8、气体分子运动的特点

(1)气体分子间有很大的空隙。气体分子之间的距离大约是分子直径的10倍。

(2)气体分子之间的作用力十分微弱。在处理某些问题时,可以把气体分子看作没有相互作用的质点。

(3)气体分子运动的速率很大,常温下大多数气体分子的速率都达到数百米每秒。离这个数值越远,分子数越少,表现出“中间多,两头少”的统计分布规律。

高三物理知识点总结 篇六

摩擦力

1、定义:当一个物体在另一个物体的表面上相对运动(或有相对运动的趋势)时,受到的阻碍相对运动(或阻碍相对运动趋势)的力,叫摩擦力,可分为静摩擦力和滑动摩擦力。

2、产生条件:①接触面粗糙;②相互接触的物体间有弹力;③接触面间有相对运动(或相对运动趋势)。

说明:三个条件缺一不可,特别要注意“相对”的理解。

3、摩擦力的方向:

①静摩擦力的方向总跟接触面相切,并与相对运动趋势方向相反。

②滑动摩擦力的方向总跟接触面相切,并与相对运动方向相反。

说明:(1)“与相对运动方向相反”不能等同于“与运动方向相反”。

滑动摩擦力方向可能与运动方向相同,可能与运动方向相反,可能与运动方向成一夹角。

(2)滑动摩擦力可能起动力作用,也可能起阻力作用。

4、摩擦力的大小:

(1)静摩擦力的大小:

①与相对运动趋势的强弱有关,趋势越强,静摩擦力越大,但不能超过静摩擦力,即0≤f≤fm但跟接触面相互挤压力FN无直接关系。具体大小可由物体的运动状态结合动力学规律求解。

②静摩擦力略大于滑动摩擦力,在中学阶段讨论问题时,如无特殊说明,可认为它们数值相等。

③效果:阻碍物体的相对运动趋势,但不一定阻碍物体的运动,可以是动力,也可以是阻力。

(2)滑动摩擦力的大小:

滑动摩擦力跟压力成正比,也就是跟一个物体对另一个物体表面的垂直作用力成正比。

公式:F=μFN(F表示滑动摩擦力大小,FN表示正压力的大小,μ叫动摩擦因数)。

说明:①FN表示两物体表面间的压力,性质上属于弹力,不是重力,更多的情况需结合运动情况与平衡条件加以确定。

②μ与接触面的材料、接触面的情况有关,无单位。

③滑动摩擦力大小,与相对运动的速度大小无关。

5、摩擦力的效果:总是阻碍物体间的相对运动(或相对运动趋势),但并不总是阻碍物体的运动,可能是动力,也可能是阻力。

说明:滑动摩擦力的大小与接触面的大小、物体运动的速度和加速度无关,只由动摩擦因数和正压力两个因素决定,而动摩擦因数由两接触面材料的性质和粗糙程度有关。

考物理知识点总结:动量守恒

动量守恒

所谓“动量守恒”,意指“动量保持恒定”。考虑到“动量改变”的原因是“合外力的冲”所致,所以“动量守恒条件”的直接表述似乎应该是“合外力的冲量为O”。但在动量守恒定律的实际表述中,其“动量守恒条件”却是“合外力为。”。究其原因,实际上可以从如下两个方面予以解释。

(1)“条件表述”应该针对过程

考虑到“冲量”是“力”对“时间”的累积,而“合外力的冲量为O”的相应条件可以有三种不同的情况与之对应:第一,合外力为O而时间不为O;第二,合外力不为0而时间为。;第三,合外力与时间均为。显然,对应于后两种情况下的相应表述没有任何实际意义,因为在“时间为。”的相应条件下讨论动量守恒,实际上就相当于做出了一个毫无价值的无效判断―“此时的动量等于此时的动量”。这就是说:既然动量守恒定律针对的是系统经历某一过程而在特定条件下动量保持恒定,那么相应的条件就应该针对过程进行表述,就应该回避“合外力的冲量为O”的相应表述中所包含的那两种使“过程”退缩为“状态”的无价值状况

(2)“条件表述”须精细到状态

考虑到“冲量”是“过程量”,而作为“过程量”的“合外力的冲量”即使为。,也不能保证系统的动量在某一过程中始终保持恒定。因为完全可能出现如下状况,即:在某一过程中的前一阶段,系统的动量发生了变化;而在该过程中的后一阶段,系统的动量又发生了相应于前一阶段变化的逆变化而恰好恢复到初状态下的动量。对应于这样的过程,系统在相应过程中“合外力的冲量”确实为O,但却不能保证系统动量在过程中保持恒定,充其量也只是保证了系统在过程的始末状态下的动量相同而已,这就是说:既然动量守恒定律针对的是系统经历某一过程而在特定条件下动量保持恒定,那么相应的条件就应该在针对过程进行表述的同时精细到过程的每一个状态,就应该回避“合外力的冲量为。”的相应表述只能够控制“过程”而无法约束“状态

‘弹性正碰”的“定量研究”

“弹性正碰”的“碰撞结果”

质量为跳,和m:的小球分别以vl。和跳。的速度发生弹性正碰,设碰后两球的速度分别为二,和二2,则根据碰撞过程中动量守恒和弹性碰撞过程中系统始末动能相等的相应规律依次可得。

“碰撞结果”的“表述结构”

作为“碰撞结果”,碰后两个小球的速度表达式在结构上具备了如下特征,即:若把任意一个小球的碰后速度表达式中的下标作“1”与“2”之间的代换,则必将得到另一个小球的碰后速度表达式。“碰撞结构”在“表述结构”上所具备的上述特征,其缘由当追溯到“弹性正碰”所遵循的规律表达的结构特征:在碰撞过程动量守恒和碰撞始末动能相等的两个方程中,若针对下标作“1”与“2”之间的代换,则方程不变。

“动量”与“动能”的切入点

“动量”和“动能”都是从动力学角度描述机械运动状态的参量,若在其间作细致的比对和深人的剖析,则区别是显然的:动量决定着物体克服相同阻力还能够运动多久,动能决定着物体克服相同阻力还能够运动多远;动量是以机械运动量化机械运动,动能则是以机械运动与其他运动的关系量化机械运动。

高考物理运动和力必考知识点 篇七

1、物质的运动和静止是相对参照物而言的。

2、相对于参照物,物体的位置改变了,即物体运动了。

3、参照物的选取是任意的,被研究的物体不能选作参照物。

4、力的作用是相互的,施力物体同时也是受力物体。

5、力的作用效果有两个:

①使物体发生形变。

②使物体的运动状态发生改变。

6、力的三要素:力的大小、方向、作用点。

7、重力的方向总是竖直向下的,浮力的方向总是竖直向上的。

8、重力是由于地球对物体的吸引而产生的。

9、一切物体所受重力的施力物体都是地球。

10、两个力的合力可能大于其中一个力,可能小于其中一个力,可能等于其中一个力。

11、二力平衡的条件(四个):大小相等、方向相反、作用在同一条直线上,作用在同一个物体上。

12、用力推车但没推动,是因为推力小于阻力(错,推力等于阻力)。

13、影响滑动摩擦力大小的两个因素:

①接触面间的压力大小。

②接触面的粗糙程度。

14、惯性现象:(车突然启动人向后仰、跳远时助跑、运动员冲过终点不能立刻停下来)。

15、物体惯性的大小只由物体的质量决定(气体也有惯性)

16、司机系安全带,是为了防止惯性(错,防止惯性带来的危害)。

17、判断物体运动状态是否改变的两种方法:

①速度的大小和方向其中一个改变,或都改变,运动状态改变。

②如果物体不是处于静止或匀速直线运动状态,运动状态改变。

18、物体不受力或受平衡力作用时可能静止也可能保持匀速直线运动。

高三物理知识点总结 篇八

机械振动在介质中的传播称为机械波(mechanical wave)。机械波与电磁波既有相似之处又有不同之处,机械波由机械振动产生,电磁波由电磁振荡产生;机械波的传播需要特定的介质,在不同介质中的传播速度也不同,在真空中根本不能传播,而电磁波(例如光波)可以在真空中传播;机械波可以是横波和纵波,但电磁波只能是横波;机械波与电磁波的许多物理性质,如:折射、反射等是一致的,描述它们的物理量也是相同的。常见的机械波有:水波、声波、地震波。

机械振动产生机械波,机械波的传递一定要有介质,有机械振动但不一定有机械波产生。

形成条件

波源

波源也称振源,指能够维持振动的传播,不间断的输入能量,并能发出波的物体或物体所在的初始位置。波源即是机械波形成的必要条件,也是电磁波形成的必要条件。

波源可以认为是第一个开始振动的质点,波源开始振动后,介质中的其他质点就以波源的频率做受迫振动,波源的频率等于波的频率。

介质

广义的介质可以是包含一种物质的另一种物质。在机械波中,介质特指机械波借以传播的物质。仅有波源而没有介质时,机械波不会产生,例如,真空中的闹钟无法发出声音。机械波在介质中的传播速率是由介质本身的固有性质决定的。在不同介质中,波速是不同的。

传播方式与特点

机械波在传播过程中,每一个质点都只做上下(左右)的简谐振动,即,质点本身并不随着机械波的传播而前进,也就是说,机械波的一质点运动是沿一水平直线进行的。例如:人的声带不会随着声波的传播而离开口腔。简谐振动做等幅震动,理想状态下可看作做能量守恒的运动。阻尼振动为能量逐渐损失的运动。

为了说明机械波在传播时质点运动的特点,现已绳波(右下图)为例进行介绍,其他形式的机械波同理[1]。

绳波是一种简单的横波,在日常生活中,我们拿起一根绳子的一端进行一次抖动,就可以看见一个波形在绳子上传播,如果连续不断地进行周期性上下抖动,就形成了绳波[1]。

把绳分成许多小部分,每一小部分都看成一个质点,相邻两个质点间,有弹力的相互作用。第一个质点在外力作用下振动后,就会带动第二个质点振动,只是质点二的振动比前者落后。这样,前一个质点的振动带动后一个质点的振动,依次带动下去,振动也就发生区域向远处的传播,从而形成了绳波。如果在绳子上任取一点系上红布条,我们还可以发现,红布条只是在上下振动,并没有随波前进[1]。

由此,我们可以发现,介质中的每个质点,在波传播时,都只做简谐振动(可以是上下,也可以是左右),机械波可以看成是一种运动形式的传播,质点本身不会沿着波的传播方向移动。

对质点运动方向的判定有很多方法,比如对比前一个质点的运动;还可以用"上坡下,下坡上"进行判定,即沿着波的传播方向,向上远离平衡位置的质点向下运动,向下远离平衡位置的质点向上运动。

机械波传播的本质

在机械波传播的过程中,介质里本来相对静止的质点,随着机械波的传播而发生振动,这表明这些质点获得了能量,这个能量是从波源通过前面的质点依次传来的。所以,机械波传播的实质是能量的传播,这种能量可以很小,也可以很大,海洋的潮汐能甚至可以用来发电,这是维持机械波(水波)传播的能量转化成了电能。

机械波

机械振动在介质中的传播称为机械波。机械波与电磁波既有相似之处又有不同之处,机械波由机械振动产生,电磁波由电磁振荡产生;机械波的传播需要特定的介质,在不同介质中的传播速度也不同,在真空中根本不能传播,而电磁波,例如光波,可以在真空中传播;机械波可以是横波和纵波,但电磁波只能是横波;机械波与电磁波的许多物理性质,如:折射、反射等是一致的,描述它们的物理量也是相同的。常见的机械波有:水波、声波、地震波。

高考高三物理全年复习技巧总结 篇九

高三物理的复习,考生要认真的阅读课本,夯实基础知识。同时注意做题要精而少,不要陷入题海战术。为了增强复习的针对性,物理一轮复习要做好定期总结。

一、认真阅读课本。课本中有一些简单问题需要学生自己阅读理解记忆,老师不讲并不代表这些问题不重要,高考不涉及,而是要自己结合课本复习效果更好。比如原子物理部分,该记忆的知识点较多但不难,自己记忆准确,理解透彻就不怕考题变化了。因为高考出题总是源于课本。

二、养成良好的复习习惯。课前预习到位;课中认真听讲、积极思考,要多问几个为什么,老师为什么这样做,怎么想到这样做,有没有其他做法等等;课后做题检测要敢于下手,善于推理,题目一看不会怎么办?再读题,再审题,从力和运动的交互关系入手再研究运动过程,多些假如,多些尝试。做到每晚一小结,每周一大结,一月一自测。

三、走出大量做题的误区。物理复习通过做题可以加深对概念、规律的理解,但并不是做题越多越好,做题不在多而在精。对相类似的题多做几道,关键是去体会题中所运用的方法的共性和区别,把握物理的内在联系,把握高中物理知识的衍生和发展规律,弄清知识的来龙去脉,从而做到对物理知识体系的深刻理解和掌握,达到对物理知识的灵活应用。

四、做好定期总结。为了避免所学知识被遗忘,每周都要把所学内容进行整理,隔一定时间要再回顾、重悟,只有这样才能做好知识的存储、完善高中物理学科知识体系,构建系统知识网络,在应用时才有内容可提取。

高三物理知识点总结 篇十

力学知识点1、力:

力是物体之间的相互作用,有力必有施力物体和受力物体。力的大小、方向、作用点叫力的三要素。用一条有向线段把力的三要素表示出来的方法叫力的图示。

按照力命名的依据不同,可以把力分为

按性质命名的力(例如:重力、弹力、摩擦力、分子力、电磁力等。)

按效果命名的力(例如:拉力、压力、支持力、动力、阻力等)。

力的作用效果:形变;改变运动状态。

力学知识点2、重力:

由于地球的吸引而使物体受到的力。重力的大小G=mg,方向竖直向下。作用点叫物体的重心;重心的位置与物体的质量分布和形状有关。质量均匀分布,形状规则的物体的重心在其几何中心处。薄板类物体的重心可用悬挂法确定,

力学知识点3、弹力:

(1)内容:发生形变的物体,由于要恢复原状,会对跟它接触的且使其发生形变的物体产生力的作用,这种力叫弹力。

(2)条件:接触;形变。但物体的形变不能超过弹性限度。

(3)弹力的方向和产生弹力的那个形变方向相反。(平面接触面间产生的弹力,其方向垂直于接触面;曲面接触面间产生的弹力,其方向垂直于过研究点的曲面的切面;点面接触处产生的弹力,其方向垂直于面、绳子产生的弹力的方向沿绳子所在的直线。)

(4)大小:

弹簧的弹力大小由F=kx计算,

一般情况弹力的大小与物体同时所受的其他力及物体的运动状态有关,应结合平衡条件或牛顿定律确定。

力学知识点4、摩擦力:

(1)摩擦力产生的条件:接触面粗糙、有弹力作用、有相对运动(或相对运动趋势),三者缺一不可。

m.gaokaobaba.com (2)摩擦力的方向:跟接触面相切,与相对运动或相对运动趋势方向相反。但注意摩擦力的方向和物体运动方向可能相同,也可能相反,还可能成任意角度。

2高中物理知识点总结:力学部分

力学的基本规律之:匀变速直线运动的基本规律(12个方程);

三力共点平衡的特点;

牛顿运动定律(牛顿第一、第二、第三定律);

力学的基本规律之:万有引力定律;

天体运动的基本规律(行星、人造地球卫星、万有引力完全充当向心力、近地极地同步三颗特殊卫星、变轨问题);

力学的基本规律之:动量定理与动能定理(力与物体速度变化的关系—冲量与动量变化的关系—功与能量变化的关系);

动量守恒定律(四类守恒条件、方程、应用过程);

功能基本关系(功是能量转化的量度)

力学的基本规律之:重力做功与重力势能变化的关系(重力、分子力、电场力、引力做功的特点);

功能原理(非重力做功与物体机械能变化之间的关系);

力学的基本规律之:机械能守恒定律(守恒条件、方程、应用步骤);

简谐运动的基本规律(两个理想化模型一次全振动四个过程五个物理量、简谐运动的对称性、单摆的振动周期公式);简谐运动的图像应用;

简谐波的传播特点;波长、波速、周期的关系;简谐波的图像应用。

上面内容就是差异网为您整理出来的10篇《最新高三物理知识点总结大全》,希望可以启发您的一些写作思路。

297 41612