数学建模论文(最新5篇)

发布时间:

在学习、工作中,大家总少不了接触论文吧,论文可以推广经验,交流认识。如何写一篇有思想、有文采的论文呢?读书破万卷下笔如有神,下面差异网为您精心整理了5篇《数学建模论文》,希望能够给您提供一些帮助。

数学建模论文模板 篇一

计算数学建模是用数学的思考方式,采用数学的方法和语言,通过简化,抽象的方式来解决实际问题的一种数学手段。数学建模所解决的问题不止现实的,还包括对未来的一种预见。数学建模可以说和我们的生活息息相关,尤其是如今科技发达的今天。数学建模应用领域超乎我们的想象,甚至达到无所不及的程度,随着数学建模在大学教学中的广泛使用,使数学建模不止成为一种学科,更重要的是指导新生代更好的利用现代科学技术,成为高科技人才,把我国人才强国,科教兴国的战略推向一个新的高度。

1.数学建模对教学过程的作用

1.1数学建模引进大学数学教学的必要。教学过程,是教师根据社会发展要求和当代学生身心发展的特点,借助教学条件,指导学生通过认识教学内容从而认识客观世界,并在此基础之上发展自身的过程,即教学活动的展开过程。以往高工专的数学教学存在着知识单一,内容陈旧,脱离实际等缺陷,已经不能满足时代的发展,如今的数学教学过程不是单纯的传授数学学科知识,而是通过数学教学过程引导学生认识科学,理解科学,从而指导实践,促进学生的德智体美劳全面的进步和发展。因此数学建模成为一门学科,被各大高等院校广泛引用和推广,其实数学建模不止应用在大学数学教学中,其他一切教学过程多可引进数学建模。1.2数学建模在大学数学教学中的运用。大学数学教师通过这个数学建模过程来引导学生解决问题和指导实践的能力。再次建模结果对现实生活的指导,这是大学数学教学中数学建模所需要达到的效果和要求。不再停留在理论学习,而是通过理论指导实践,从而为科学的进步和人才综合水平的提高提供可能。

2.数学建模对当代大学生的作用

2.1数学建模对数学学科和其他学科学生的巨大影响力学习数学建模,能够使一个单独的数学家变成经济学家,物理学家还有金融学家,甚至是艺术家,只要正握数学建模就能指导学生通过掌握数学建模的思维和方法向其他领域学习和进步。数学建模成为连接数学和其他领域的纽带,是当今数学科学在其他领导应用的桥梁,是数学技术转化为其他技术的途径,数学建模在学生中越来越受到关注和欢迎,越来越多的学生开始学习数学建模,尤其是数学界和工程界的学生,这成为当今学生成为现代科技工作者必须掌握的只是能力之一。

2.2数学建模对学生综合能力的提高数学建模是大学数学教师运用数学科学去分析和解决实际问题,在数学建模学习的过程中,大学生的数学能力得到提高,其分析问题、解决问题的能力得到提高,这对大学生毕业走向社会具有着重大意义。通过数学建模的学习和应用,激发大学生学习数学和应用数学的能力,运用数学的思维和方法,利用现代计算机科学,来解决数学及其他领域的问题。

3.数学建模对大学数学及其他学科教师的作用

数学建模引入大学数学教学,这是时代的进步,是时代对当代大学教师提出的新要求,尤其是大学数学教师,其不再停留在以往的单纯的数学知识讲授方向,而是将数学科学作为基础,引导当代大学生发散思维,发挥主观能动性,从而学习数学科学,并运用数学科学解决现实问题。在这个过程中大学教师的专业知识得到提高,其创新精神也得到了极大的丰富。大学数学教师不止完成数学教学,更重要的是培养了高科技的人才,这对大学数学教师的社会地位也有了相应的改变,在尊重人才,尊重科学的氛围中,大学数学教师及其他学科的教师得到了鼓舞,得到了进步,得到了认可。数学建模越来越重要,关于数学建模的各种国内国际大赛频频举办,这对大学数学教师在知识,体力和创新性上都提出新的要求,为了更好的参与数学建模比赛,大学数学教师投入更多的时间和经历在学生教育和数学建模中,他们成为真正的台前和幕后的指挥者。

随着现代大学学科的丰富,尤其是计算机科学的广泛应用,大学数学教学的跨时代发展,数学建模成为各个高校数学教学的重点内容,数学建模教学吸纳数学家,计算机学家等多个学科专家的意见,从而为培养出综合行的高科技人才做好充分的准备。可以说数学建模教学是当今大学数学教学的主旋律,是数学科学和其他科学进步发展的方向和原动力。

参考文献:

[1]李进华。教育教学改革与教育创新探索。安徽:安徽大学出版社,20xx.8.

[2]于骏。现代数学思想方法。山东:石油大学出版社,1997.

数学建模论文模板 篇二

随着社会经济的飞速发展,数学在各种领域中所发挥的作用也越来越显著“高技术实质即数学技术”这一观点广受肯定,有关数学的应用性也备受社会各界关注和重视。为了反映社会及经济发展的需要,我国教育在培养学生时,除了要求其掌握理论知识以外,还要求其能够利用数学思想及方法,及时发现和解决实际中所遇到的各类问题,最终成为同社会及经济发展相适应的应用型人才。而这种利用数学思想分析实际问题,找到数学关系及规律,并将该问题转变为数学问题,构建相应的数学模型,从而解决问题的过程即数学建模。为此,各高校在培养应用型人才时,必须注重加强学生数学建模能力的提升。

一、对高校应用型人才培养的认识

所谓的“应用型人才”,指的是能够利用所学知识及专业技能在社会及经济活动中予以正确实践的专业化人才,也是具备生产一线基础知识及技能,专门从事一线生产的人才。社会对于应用型人才提出了如下要求:不仅具备扎实的基础,宽泛的知识面,较强的应用能力,还具有较高的素质,拥有创新及团队合作意识。其突出特点即知识面宽广、理论基础深厚,可以讲所学知识正确地应用于相关行业领域,同时,能够适应市场经济发展对于人才需求的逐步变化,还具有进一步接受教育与汲取新知识的能力,能够逐步扩展同职业相关的学科能力。

随着我国各大高校扩招力度逐步加大,高等教育正在逐步朝着大众化趋势发展,传统学术型或研究型人才培养模式面临着越来越严峻的挑战,为此,不少发达国家纷纷提出了“培养应用型人才,发展应用型高校”等战略方针。其中,德国早在上个世纪70年代就已经成立了首座应用型科技大学,专门培养和发展应用型人才,并受到了普遍的欢迎,此外,美、英、日也纷纷建立了应用型高校。近些年来,我国各大院在培养应用型人才方面也取得了显著的成果,但由于认识方面存在不足,因此,应用型培养方案及实施过程仍存在诸多问题,培养模式有待进一步完善。经多年探索,结合数学在各个领域中的广泛应用及培养应用型人才的相关要求,借助于数学建模加快高校应用型人才的培养具有十分重要的作用。

二、数学建模对我国高校应用型人才培养的现实作用分析

数学建模需要利用数学知识、语言及方法,对实际问题进行刻画,对于已建立的模型通过推理、证明、计算等,并通过数学软件来求解,对求出的结果同实际问题相似合。具体而言,数学建模对我国高校应用型人才培养的作用表现在如下方面:

(一)有助于团队合作意识的培养

鉴于实际问题往往相对复杂,因此,数学建模时需要搜集大量的数据及信息,并对这些数据进行筛选、分析和处理,建模时通常需要对模型进行假设、建立、求解,并对模型的计算进行设计,利用计算机软件对结果进行分析和检验,将结果同实际问题进行拟合,此过程在短暂的时间内,仅仅依靠一个人的力量是很难完成的,因此,数学建模过程往往需要组建一个团队,要求学生相互之间、师生间以及与社会间进行有效地沟通与合作。因此,数学建模有助于培养学生的团队合作意识,这方面恰恰是社会对于应用型人才培养的最基本要求之一。

(二)有助于创新能力的培养

由于数学建模过程中所涉及的数据多数杂乱无章,因此,要求学生能够有效地进行筛选,去粗取精,经过一系列归纳、整理、加工、提炼与总结,对已知条件进行量化,并对数学关系进行恰当描述,最终组建出相应的数学模型,再通过所学理论及方法对该模型进行求解。为了简化实际问题,必须针对各种因素进行分析,对其中可忽略不计的因素进行判断,这要求学生必须对实际问题具有深刻地理解,明确研究目标及数学背景,以完成这一创造性的过程。此外,数学模型必须对实际问题进行真实、近似地刻画,以求所构建模型能够近乎完美、全面地表达这一实际问题,同时,还要求该模型容易求解,为此,必须对该模型进行不断改善,要求学生可以进入更深的知识层面中,反复产生更多新问题,往复循环,从而实现学生创新能力地逐步提高,满足应用型人才的相关要求。

(三)有助于学生综合素质及能力的培养

数学建模实质上就是综合运用数学知识及方法解决社会实践问题的过程,要求学生除了具备扎实的数学基础及逻辑思维能力以外,还对实际问题的背景具有一定的了解,能够对所具备的各类知识进行融会贯通。数学建模数据庞大而又复杂,因此,处理数据不仅需要分析和综合,还需要抽象、概括、比较、类比等多个过程,经过如此种种的培养,学生应变能力、全面分析及综合思考能力均得到了有效地提高,逐步加强了个人的综合素质及能力培养,这也是成为应用型人才的基本要求。

(四)有助于学生实践操作能力的培养

通常而言,以实际问题为依据所抽象和建立起的数学模型往往十分复杂,因此,数学模型求解过程也很困难,甚至难以求出解析解,即使可以求得也因过于复杂而缺乏足够的应用价值。因此,求解数学模型时需对计算方法进行设计和编写,利用数学软件对该数值解进行计算,要求学生必须具备数学软件及计算机操作及运用能力,经这些过程的锻炼,学生实践动手能力也势必得到了大幅度地提高。此外,数学建模需进行调研,对数据进行广泛搜集和补充,此即培养应用型人才中所格外关注的践性。

(五)全面体现了理论知识的实践应用性

数学建模中存在许多较为典型的案例,例如,“最优化捕鱼策略”,“投资收入及风险”等等,这些都凸显了数学知识强大的应用性。因此,数学建模已经成为数学应用的必经之路,也是将数学和社会实践联系起来的枢纽和桥梁。数学建模需借助于数学知识及方法,对所需解决的问题进行刻画,同时,数学建模还必须对所计算的结果同实际问题相似合,其全面体现了数学理论知识的实践应用性,这方面同社会对于应用型人才培养的要求是相互契合的。

(六)有助于学生自主学习及表达能力的培养

数学建模要求学生自主分析、探索和解决问题,无论是数据收集、补充、完善,还是构建模型,都需要学生主动参与其中,独立解决求解等过程,此外,建模需要全面运用各个专业学科知识,掌握不同的背景资料,科学判断和取舍相关数据,同时,要求自主查询实际问题所涉及到的知识及资料,所有这些都为培养学生的自主学习能力提供了良好的条件。数学建模过程要求采用学生自己的语言对实际问题进行描述和解决,需要深度地沟通和交流,也需要对论文进行写作,因此,这些也提高了他们的语言组织及表达能力。在培养应用型人才时,一个显著特点即要求其具备继续教育及汲取新知识的能力,能够拓展同职业相关的理论专业知识及技能,而数学建模培养了学生的自主学习及语言表达能力,为他们进一步汲取新知识、提高新技能打下了坚实的基础。

可以这样说,经过数学建模的系统化训练,学生收获了探索实际问题的真实体验,提高了信息收集、筛选、分析及运用能力,明白了分享与合作的重要性,锻炼了洞察力、意志力、自主学习、语言表达、专业知识综合运用、分析及解决问题的能力等等,所有这些都满足应用型人才培养目标,同应用型人才培养模式的要求保持一致。因此,数学建模在高校应用型人才培养过程中发挥着巨大的作用。

三、提高大学生数学建模能力的若干建议

(一)设立专门的数学建模课程

高校应设立专门的数学建模课程,要求数学教师必须具备足够的数学建模知识及能力,一方面,能够在课堂教学过程中渗透数学建模思想及应用的重要性;另一方面,可以将数学建模和学科知识理论相结合,游刃有余地引导学生学习和应用数学知识及方法。利用实践问题及典型案例,灵活穿插于课程教学之中,使学生逐步提高数学建模能力,并对数学建模产生浓厚的兴趣。

(二)将应用型人才培养目标与数学建模相结合

要明确学生的主体地位,无论教学还是数学建模竞赛辅导,都必须将课堂主体这一地位让出来,让学生自主进行案例阅读、信息搜集及处理、模型建立及讨论,将大家从被动接受转变为主动探索与思考,提高其学习兴趣,同时,充分发挥其潜力,提高其独立思考及解决问题的能力,逐步提高自身的综合素质,不断朝着应用型人才方向发展。应用型人才培养要体现专业优势,它与数学建模是紧密联系的。在实际培养过程中,要以数学科目为基础,运用数学软件等工具,为数学建模提供必要的支持,并为日后在社会实践中的应用打下良好的基础。

(三)抓好建模教学两大阶段

一是在全校范围内开设建模课程,便于有兴趣的学生学习基础性的建模知识,接触简单的问题及模型,了解数学建模课程的基本方法和内容;二是暑期强化培训阶段,为了更好地应对数学建模竞赛,必须对学生的数学建模能力进行强化锻炼,提高其数学应用能力。在这两个阶段内,教师的作用至关重要,暑期培训主要针对的是有一定专业基础、自主动手能力较强、建模积极性较高的学生。因此,在这个阶段,应选择历届数学建模竞赛题向学生进行讲解,由拥有丰富经验的教师进行专题报告,同时,组织大学生对竞赛进行模拟,由往届学生传授竞赛经验,使学生自主寻找解决问题的方法,提高创新能力。

(四)设立数学建模小组及建模协会

在教学培养中设立数学建模竞争小组,依据现有师资力量,对不同资质、兴趣、特长和专业的教师进行分组。不同类型小组负责指定工作内容,要保证培训、学习和竞赛目标的高效完成。此外,还可设立相应的建模协会,组建对外开放的数学建模实验室,建模协会每年定期在校园内举报建模竞赛,请教师或历届获奖学生进行建模知识讲座,对数学建模进行宣传,培养大学生的学习兴趣,为优秀参赛人员的选拔奠定基础,这样不仅丰富了学生业余文化生活,还提高了其科研水平。

数学建模论文模板 篇三

1引言

数学模型的难点在于建模的方法和思路,目前学术界已经有各种各样的建模方法,例如概率论方法、图论方法、微积分方法等,本文主要研究的是如何利用方程思想建立数学模型从而解决实际问题。实际生活中的很多问题都不是连续型的,例如人口数、商品价格等都是呈现离散型变化的趋势,碰到这种问题可以考虑采用差分方程或差分方程组的方式进行表示。有时候人们除了想要了解问题的起因和结果外还希望对中间的速度以及随时间变化的趋势进行探索,这个时候就要用到微分方程或微分方程组来进行表示。以上只是简单的举两个例子,其实方程的应用极为广泛,只要有关变化的问题都可以考虑利用方程的思想建立数学模型,例如常见的投资、军事等领域。利用方程思想建立的数学模型可以更为方便地观察到整个问题的动态变化过程,并且根据这一变化过程对未来的状况进行分析和预测,为决策的制定和方案的选择提供参考依据。利用方程建立数学模型时就想前文所说的那样,如果是离散型变化问题可以考虑采用差分思想建模,如果是连续型变化问题可以考虑采用常微分方程建立模型。对于它们建模的方式方法可以根据几个具体的实例说明。

2方程在数学建模中的应用举例

2.1常微分方程建模的应用举例

正如前文所述,常微分方程的思想重点是对那些过程描述的变量问题进行数学建模,从而解决实际的变化问题,这里举一个例子来说明。例1人口数量变化的逻辑斯蒂数学方程模型在18世纪的时候,很多学者都对人口的增长进行了研究,英国的学者马尔萨斯经过多年的研究统计发现,人口的净相对增长率是不变的,也就是说人口的净增长率和总人口数的比值是个常数,根据这一前提条件建立人口数量的变化模型,并且对这一模型进行分析研究,找出其存在的问题,并提出改进措施。解:假设开始的时间为t,时间的间隔为Δt,这样可以得出在Δt的时间内人口增长量为N(t+Δt)-N(t)=rN(t)Δt,由此可以得出以下式子。dN(t)dt=rN(t)N(t0)=N{0(1)对于这种一阶常微分方程可以采用分离变量法进行求解,最终解得N(t)=N0er(t-t0)而后将过去数据中的r、N0带入上述式子中就可以得出最后的结果。这个式子表明人口数量在自然增长的情况下是呈指数规律增长的,而且把这个公式对过去和未来的人口数量进行对比分析发现还是相当准确的,但是把这个模型用到几百年以后,就可以发现一些问题了,例如到2670年的时候,如果仍然根据这一模型,那么那个时候世界人口就会有3.6万亿,这已经大大的超过了地球可以承受的最大限度,所以这个模型是需要有前提的,前提就是地球上的资源对人口数量的限制。荷兰的生物学家韦尔侯斯特根据逻辑斯蒂数学方法和实际的调查统计引入了一个新的常数Nm,这个常数就是用来控制地球上所能承受的最大人口数,将这一常数融入逻辑斯蒂方程可以得出以下的式子。dN(t)dt=rN(t)(1-N(t)Nm)N(t0)=N{0(2)该方程解为N(t)=Nm1+NmN0e-r(t-t0)一个新的数学模型建立后,首先要做的就是验证它的正确性,经过研究发现在1930年之前的验证中还是比较吻合的,但是到了1930年之后,用这个模型求出的人口数量就与实际情况存在很大的误差,而且这一误差呈现越来越大的变化趋势。这就说明当初设定的人口极限发生了变化,这是由于随着科学技术的不断进步,人们可以利用的资源越来越多,导致人口极限也呈现变大的趋势。

2.2差分方程建模的应用举例

如前文所言,对于离散型问题可以采用差分方程的方法建立数学模型。例如以25岁为人类的生育年龄,就可以得出以下的数学模型。yk+1-yk=ryk(1-ykN),k=0,1,2,…即为yk+1=(r+1)yk[1-r(r+1)Nyk]其中r为固有增长率,N为最大容量,yk表示第k代的人口数量,若yk=N,则yk+1,yk+2,…=N,y*=N是平衡点。令xk=r(r+1)Nyk,记b=r+1。xk+1=bxk(1-xk)这个方程模型是一个非线性差分方程,在解决的过程中我们只需知道x0,就可以计算出xk。如果单纯的考虑平衡点,就会有下面的式子。x=f(x)=bx(1-x),则x*=rr+1=1-1bx因为f'(x*)=b(1-2x*)=2-b,当|f'(x*)|<1时稳定,当|f'(x*)|>1时不稳定。所以,当1<b<2或2<b<3时,xkk→仯仯仭∞x*.当b>3时,xk不稳定。2.3偏微分方程建模的应用举例在实际生活中如果有多个状态变量同时随时间不断的变化,那么这个时候就可以考虑采用偏微分方程的方法建立数学模型,还是以人口数量增长模型为例,根据前文分析已经知道建立的模型都是存在一定的局限性的,对于人类来说必须要将个体之间的区别考虑进去,尤其是年龄的限制,这时的人口数量增长模型就可以用以下的式子来表示。祊(t,r)祎+祊(t,r)祌=-μ(t,r)p(t,r)+φ(t,r)p(0,r)=p0(r);p(t,r0)=∫r2r1β(r,t)p(t,r)d{r其中,p(t,r)主要表示在t时候处于r岁的人口密度分布情况,μ(t,r)表示的r岁人口死亡率,φ(t,r)表示r岁人口的迁移率,β(r,t)表示r岁的人的生育率。除此之外,式子中的积分下限r1表示能够生育的最小岁数,r2表示能够生育的最大岁数。根据人口数量增长的篇微分方程可以看出实际生活中的人口数量与年龄分布、死亡率和出生率都有着密不可分的关系,这与客观事实正好相吻合,所以这一个人口增长模型能够更为准确地反应人口的增长趋势。当然如果把微分方程中的年龄当做一个固定的值,那么就由偏微分方程转化成了常微分方程。另外如果令μ(t,r)=-r,p(t,r)=N(t),N(0)=N0,φ=rN2(t)/Nm,那么上述偏微分方程就变成了Verhulst模型。偏微分方程在实际生活中的应用也相当广泛,物理学、生态学等多个领域的问题都可以通过建立偏微分方程来求解。

3结束语

上世纪六七十年代,数学建模进入一些西方大学,紧随其后,八十年代它进入中国的部分高校课堂。把方程式引入到数学建模中是数学建模更具体和更实际的应用,方程式的空间性和抽象性决定了它需要借助数学建模来更直观和更立体地展示自己。20多年的本土适应和自身完善使绝大多数本科院校和许多专科学校都开设了各种形式的数学建模课程、讲座和竞赛。方程在数学建模中的思想和应用对于数学课堂效果本身和培养学生的动手和操作能力均有重要意义:一方面,它利于激励学生学习方程的积极性,培养学生建立数学模型的创造性和行动性;另一方面,它有效推动数学教学体系、教学内容和方法的改革,为培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径。

数学建模论文模板 篇四

一、小学数学建模

"数学建模"已经越来越被广大教师所接受和采用,所谓的"数学建模"思想就是通过创建数学模型的方式来解决问题,我们把该过程简称为"数学建模",其实质是对数学思维的运用,方法和知识解决在实际过程中遇到的数学问题,这一模式已经成为数学教育的重要模式和基本内容。叶其孝曾发表《数学建模教学活动与大学数学教育改革》,该书指出,数学建模的本质就是将数学中抽象的内容进行简化而成为实际问题,然后通过参数和变量之间的规律来解决数学问题,并将解得的结果进行证明和解释,因此使问题得到深化,循环解决问题的过程。

二、小学数学建模的定位

1、定位于儿童的生活经验

儿童是小学数学的主要教学对象,因此数学问题中研究的内容复杂程度要适中,要与儿童的生活和发展情况相结合。"数学建模"要以儿童为出发点,在数学课堂上要多引用发生在日常生活中的案例,使儿童在数学教材上遇到的问题与现实生活中的问题相结合,从而激发学生学习的积极性,使学生通过自身的经验,积极地感受数学模型的作用。同时,小学数学建模要遵循循序渐进的原则,既要适合学生的年龄特征,赋予适当的挑战性;又要照顾儿童发展的差异性,尊重儿童的个性,促进每一个学生在原有的基础上得到发展。

2、定位于儿童的思维方式

小学生的特点是年龄小,思维简单。因此小学的数学建模必须与小学生的实际情况相结合,循序渐进的进行,使其与小学生的认知能力相适应。

实际情况表明,教师要想使学生能够积极主动的思考问题,提高他们将数学思维运用到实际生活中的能力,就必须把握好儿童在数学建模过程中的情感、认知和思维起点。我们以《常见的数量关系》中关于速度、时间和路程的教学为例,有的老师启发学生与二年级所学的乘除法相结合,使乘除法这一知识点与时间、速度和路程建立了关联,从而使"数量关系"与数学原型"一乘两除"结合起来,并且使学生利用抽象与类比的思维方法完成了"数量关系"的"意义建模",从而创建了完善的认知体系。

三、小学"数学建模"的教学策略

1、培育建模意识

当前的小学数学教材中,大部分内容编排的思路都是以建模为基础,其内容的开展模式主要是"生活情景到抽象模型,然后到模型验证,最后到模型的运用和解释"。培养建模思维的关键是对教材的解读是否从建模出发,使教材中的建模思想得到充分的开发。然后对教材中比较现实的问题进行充分的挖掘,将数学化后的实际问题创建模型,最后解决问题。教师要提高学生对建模的意识与兴趣就要充分挖掘教材,指导学生去亲身体会、思考沟通、动手操作、解决问题。其次,通过引入贴近现实生活、生产的探索性例题,使学生了解数学是怎样应用于解决这些实际问题的。同时,让学生在利用数学建模解决实际问题的过程中理解数学的应用价值和社会功能,不断增强数学建模的意识。

2、体验建模过程

在数学的建模过程中,要将生活中含有数学知识与规律的实际问题抽象化,从而建成数学模型。然后利用数学规律对问题进行推理,解答出数学的结果后再进行证明和解释,从而使实际问题得到合理的解决。我们以解决问题的方法为例,使学生能够解决题目不是教学的唯一目的,使学生通过对数学问题的研究和体验来提升自己"创建"新模型的能力。使学生在不断的提出与解决问题的过程中培养成自主寻找数学模型和数学观念的习惯。如此一来,当学生遇到陌生的问题情境,甚至是与数学无关的实际问题时,都能够具备"模型"思想,处理问题的过程能具备数学家的"模型化"特点,从而使"模型思想"影响其生活的各个方面。

3、在数学建模中促进自主性建构

要使"知识"与"应用"得到良好的结合就必须提高学生积极构建数学模型的能力。我们要将数学教学的重点放在对学生观察、整合、提炼"现实问题"的能力培养上来。教学过程中,通过对日常问题的适当修改,使学生的实际生活与数学相结合,从而提升学生发现和提出问题,并通过创建模型解决问题的能力,为学生提供能够自主创建模型的条件。

我们以《比较》这课程内容为例,我们通过"建模"这一教学方法,培养学生对">""""<"和"="等符号。这种将学生的实际生活与课堂教学相结合的方法,使学生能够轻松的创建其数学模型,提升他们自主建模的信心。

四、总结

数学建模是将实际生活与数学相结合的有效途径和方法。学生在创建数学模型的过程中,其思维方式也得到了锻炼。小学阶段的教学,其数学模型的构建应当以儿童文化观为基础,其目的主要是培养儿童的建模思想,这也是提升小学生学习数学积极性,提升课堂文化气息的有效方法和途径。

数学建模论文模板 篇五

随着社会进步、科技创新和经济产业结构的不断调整,我国对高素质高技能应用型人才的需求正在不断扩大,高等职业教育的高规格人才培养显得尤其重要。社会上各行各业的工作人员,需要善于运用数学知识和数学思维方法来解决实际问题,方能为公司赢得经济效益和社会效益。面临新教育态势的压力,面对数学基础薄弱的学生,如何在有限教学期限内快速提升高职数学课的教学品质,成为高职高等数学教学改革的焦点。

一、高等职业教育数学课教学现状与分析

经过查阅大量文献资料、学生学情调研和教师座谈研讨,可以将目前高等职业教育数学课教学现状归因为课程特点、教师和学生三个方面。

1、数学课的特点。数学是一门与现实世界紧密联系的科学语言和基础的自然学科,其形式极为抽象。学生学到数学概念、方法和结论,并未掌握数学学科精髓,未使数学成为解决实际问题的利器。

2、教师方面。课堂上,教师卖力的教授“有用”的理论和方法,但学生学得吃力且效果不佳。现在,部分教师将实际生活中的鲜活例子融入数学课的教授,打破了数学教学体系和内容自我封闭的僵局,但有些教师将“数学教育是一种素质教育”阻碍为抽象、深奥的课程,严重挫伤了学生学习的积极性。

3、学生方面。就高职生学情而言,生源大多来自高考第五批等录取批次,普遍不晓得数学理性思维对人思维能力培养的重要性,高职生学习目标不明确,学习习惯尚未养成,学习动力不足。此外,面对大量抽象符号和逻辑推理,形象思维强的高职生极易产生抵触心理。上述分析表明,要想实现“数学教育本质上是一种素质教育,数学的教学不能完全和外部世界隔离开来”,就需要改变数学教育按部就班的静态教学现状,创新教学模式,激发学生的主体参与意识,方能形成生动、活泼、有趣的数学课堂。

二、数学建模在高等职业教育人才培养过程中的意义和作用

从公元前3世纪的欧几里得几何,开普勒的行星运动三大规律到近代的流体力学等重要方程,数学建模的悠久历史可见一斑。

1、数学建模的桥梁作用。随着大数据时代的到来,大量数据爆炸性的涌入银行、超市、宾馆、机场的计算机系统,都需要进行归纳整理、去伪存真、分析和汇总。因此,需要在实际问题和数学方法两者之间架设一个桥梁,这个桥梁就是数学模型。

2、数学建模思想融入高职数学课堂的意义。鉴于高等职业教育数学课教学现状与分析,结合数学建模进入高等院校数学课堂时机的日渐成熟,以及高等职业教育旨在培养高职生如何“用数学”而非“算数学”的目标,将数学建模思想融入高职数学课堂有着积极肯定的意义。

(1)时机成熟。随着大型快速计算机技术及数学软件的快速发展,早期大型水坝的应力计算、航空发动机的涡轮叶片设计等数学模型中的数学问题迎刃而解,数学建模与科学计算的完美结合成为数学科学技术转化的主要途径。计量经济学、人口控制论等新兴的交叉学科为数学建模提供了广阔的应用新天地。

(2)目标明确。数学建模的切入搭建了数学和外部世界的桥梁,解开了数学课堂教学的困境,让高职生以数学为工具去分析、解决现实生活中实际问题的目标切实可行。面对工程技术、经济管理和社会生活等领域中的实际问题,拥有敏锐洞察力的高职生面对现实问题的挑战,主动好奇的参与到资料收集、调查研究过程中来,能够摆脱惯性思维模式,敢于向传统知识挑战,尝试多样解题方式,不仅激发了学习动机,提升了数学知识水平,更有助于学生创新精神和能力的培养,让其在体会数学建模魅力和实用性的同时,渗透数学应用能力。

三、数学建模在高等数学教学中的应用实践

学生走上工作岗位后,无形中会利用数学建模思想来解决实际问题。那么,如何有效的将数学建模“植入”高数课程教学,则需要一系列科学合理有序的教学改革方可取得成效。

(1)融入数学建模思想的高职特色教材。作为教学载体,高职数学教材应从应用性职业岗位需求出发,以专业为服务对象,以实践操作为重点,以能力培养为本位,以素质培养为目的撰写情境式案例驱动的高职特色教材。

(2)构建服务专业的高职数学教学模式。以学校专业需求为服务出发点,制定专业特色鲜明的数学课程教学新体系,搭建课程的“公有”模块和“选学”模块,加强专业针对性。与服务专业类似,对于不同年级、不同数学基础学生的需求,提供个性化、分层化、系列化的教学内容,显得尤为关键。

(3)培养数学应用意识的案例教学方法。历届全国大学生数学建模竞赛参赛数量和规模的扩张使我们懂得:以热点案例出发,能够激发学生的求知欲,在求解过程中自然引出系列数学知识点,通过数学建模,让学生体会数学是刻画现实世界的数学模型,品味数学乐趣,趣化学习过程,强化数学知识应用意识,树立学生主体意识并培养学生创新意识和能力。

(4)营造数学应用意识的数学实验氛围。利用数学软件,通过寥寥数行代码解决曾经无从下手的复杂问题,必会吸引学生从耗费时间的复杂计算转移到数学建模思想、数学方法的理解和应用,培养以数学和计算机分析和解决实际问题的能力,提高数学应用意识。

(5)指导学生参加全国大学生数学建模竞赛。历届数学建模竞赛从内容到形式,都是一场与真实工作环境接近的真刀真枪的历练,要求学生团队综合运用数学及其他学科知识、使用计算机技术通过数学建模来分析、解决现实问题。从“乘公交,看奥运”、“世博会影响力的定量评估”到“SARS的传播”、“饮酒驾车”,这些开放、挑战性问题,必然会提高学生的洞察力、想象力、创造力和协作精神。

四、数学建模在高等数学教学中的实践效果

自20xx伊始,将数学建模和数学实验引入高职数学课程教学中以来,学生主动学习意愿增强,学习效果显著提升。效果主要表现实际问题求解的多样性和开放性使得学生思维得以激活和解放,解题的自由使得互联网应用达到最优化。学院连续多年组织学生参加北京市高职高专大学生数学竞赛多次获得一、二、三等奖,在全国大学生数学建模竞赛中获得多项北京市一等奖,近两年获得国家二等奖2项、国家一等奖1项的佳绩。经过共同努力,应用数学基础获批为国家精品资源共享课。需要强调三点:首先,案例教学中要科学合理的训练学生的“双向翻译”能力,要培养学生应用数学语言把实际问题翻译为明确的数学问题,再把数学问题的解翻译成常人能理解的语言。其次,所有教学活动要以学生为中心,并且离不开教师煞费苦心精心设计的教学活动,因为数学建模、指导数学实验和辅导学生参加竞赛需要教师掌握算法、优化、统计、数学软件、计算机编程等综合能力,因而教师尤为关键。再者,学院领导对数学建模、数学实验在人才培养过程中的重要性要有清晰充分的认识,才会有力度的支持数学教学改革。

五、结语

将数学建模思想和方法融入高职数学课程教学是一种先进的教育教学改革理念,是提升高职数学教学品质的关键,需要广大教师踏踏实实的钻研和工作,真正讲好每一个案例,为培养具备数学应用意识的高规格人才而努力。

以上内容就是差异网为您提供的5篇《数学建模论文》,希望可以对您的写作有一定的参考作用。

300 22725